Fiber Bragg grating sensors in for the monitoring of storage nuclear fuel pools

FBG sensors for nuclear fuel monitoringRecent events in the nuclear industry have shown the weaknesses in the control of the critical systems that ensure the safety of the nuclear plant. The extreme and accidental conditions, such as high temperatures and high levels of radiation sabotage the security of nuclear power plants, leading to major disasters. The main issue for the nuclear industry is to enhance the security of existing nuclear power plants and improve the design of the future ones. In the case of emergency or accidental conditions in nuclear reactors the following thermodynamic parameters need to be known in order to facilitate appropriate actions: temperature, pressure, water level, radiation level. The accuracy of the obtained information directly influences the decisions made by the operators. The monitoring instruments used inside the nuclear fuel pools need to better withstand severe conditions that occur during malfunctions and accidents, namely high temperatures and high levels of radiation. The strict safety regulations have pushed the fiber optic market to develop sensors based on optical fibers. Optical fiber sensors, like FBG sensors and DTS systems, have attracted interest from the nuclear plant industry for their ability to withstand harsh conditions.

Optical fiber properties depend on the temperature, strain, pressure, etc., therefore the fiber itself can be used as a sensitive element of the sensor. FBG sensors have been tested in various harsh environments and have shown consistent resistance to various harsh conditions. The immunity of FBG sensors to high temperatures, high levels of radiation, electromagnetic influence makes them an ideal monitoring solution for nuclear power plants. FBG sensors are easily mounted on any surface, are cost-effective, and require low maintenance.

There are several types of FBG sensor types that are designed to measure specific parameters. FBG temperature sensors provide long-range, long-term deployments, have a long reliability period, and have a compact size. FBG temperature sensors also provide the fastest response rate, which is especially important for emergencies and accidents.

Fiber Bragg grating (FBG) pressure sensors perform spectral analysis of the reflected wavelength to measure different parameters. Like all fiber optic sensors, FBG pressure sensors are compact and portable. FBG pressure sensors can measure high-speed events, which is essential for the localization of malfunctions inside the nuclear fuel pots.

The ability to withstand harsh conditions is the most attractive quality of FBG sensors. The use of sensors based on fiber optic technology has the potential to significantly increase the security of nuclear power plants.

Optromix is a fiber Bragg grating (FBG) sensor, vendor. We create advanced fiber optic technologies and our client’s satisfaction is our top priority. We deliver cutting-edge hi-tech products, yet we offer competitive pricing and rapid delivery time. If you want to purchase FBG temperature sensors, FBG pressure sensors, please contact us at

Fiber Bragg grating (FBG) temperature sensors and FBG interrogators in power line monitoring and temperature surveillance

FBG interrogators for power line monitoringElectricity is the backbone of modern civilization; it holds the development of both economy and technology. It is established that it is no longer an option to rely on existing infrastructure as there is a need to constantly evolve and adapt to the growing demand of the populace. The state of current infrastructure is weakened by its age of installation or by the growing demand of the population. The breakdown is imminent as it cannot bear the burden of previous years.

As the demand for energy increases, the need to monitor the efficiency of the assets arises. Despite the increased number of new power assets, it still cannot cater to the demand of the entire nations.

The development of fiber optic sensing technology became prominent for the monitoring of the power line temperature. Fiber optic sensors, including FBG temperature sensors, have proven to be valuable for the industry. It is immune to electromagnetic interference, mechanical vibrations, and electric noise. FBG sensors are more reliable and perform best under harsh conditions.

FBG temperature sensors are introduced into a fiber where they are evenly placed. The light that travels through the fiber will experience a wavelength shift if any strain is applied to the sensors. This, in turn, causes a magnitude change of the reflections that allow for accurate measurements to be performed. FBG that is used inside the sensors is highly sensitive to not only mechanical deformation but also temperature changes. To obtain and process signals emitted by FBG sensors, FBG interrogators are used. These devices can carry out spectrum analysis.

FBG temperature sensors can capture ultra-fast events in real-time, providing useful data for power line integrity monitoring and localization of stress areas. An accumulation of the data on the temperature profile of the power lines can be useful for the improvement of the intensity of the electrical current, the maintenance of power lines, and determine a threshold of the power cables. The data obtained will allow for a surplus of energy to meet modern energy needs while sustaining existing power assets.

Nowadays FBG sensors are used in a variety of different fields that require accurate and fast measurements. Depending on the nature of the application, FBG temperature sensors, FBG strain sensors, FBG pressure sensors, FBG displacement sensors may be utilized. The sensors are often accompanied by FBG interrogators to interpret the signals, and FBG multiplexers to create large monitoring systems with a big number of FBG sensors. The more complex the sensor system, the more intricate data can be obtained.

Optromix offers a wide range of FBG sensors, including FBG temperature sensors, as well as FBG multiplexers, and FBG interrogators. If you would like to purchase fiber Bragg grating sensors, please contact us: or +1 617 558 9858

Distributed temperature sensing (DTS) in geothermal energy applications

DTS in geothermal energy applicationsTraditionally, geothermal plants have been located in areas where hot springs and other indicators of thermal activity can be seen at the surface. However, enhanced geothermal systems (EGS) may also be used in areas where hot rock is found at reasonable depths. To achieve geothermal energy, fluid is injected into the drilled wells, heated by contact with the hot rock, and removed to power turbines at the surface. The majority of EGS utilize steam turbines to convert geothermal energy into electricity.
Under the constant pressures to lower operational costs and raise the effectiveness of the EGS, a number of parameters need to be managed to ensure high efficiency and competitive electricity prices. The efficiency of a geothermal plant is entirely reliant on the amount of steam that can be retrieved from the well, therefore, the subsurface reservoir must be able to provide quality geothermal fluid in sufficient quantities over its service life.
In order to retain the needed pressure in the well and to extend its service life, geothermal fluid achieved by hydraulically fracturing the hot rock is re-injected. Consequently, it is crucial to understand where the fluid is going inside the well and where the fluids come from.
It is well known and documented that the use of distributed temperature sensing in geothermal energy applications has greatly improved the reliability and longevity of EGS. Distributed temperature sensing systems can also be combined with other sensors, like FBG pressure sensors, to provide a complete data set. The information – subsurface temperature and pressure – can be used in various ways, such as:
1. Estimation of the production potential in the new wells be measuring the temperature at the point of pressure
The rate at which the fluid pressure drops after the operator opens the tap at the surface allows the calculations of reservoir size, flow resistance between wells, well completion, etc.
2. Monitoring of the surface and subsurface scale buildup and chemical cleanup
The buildup of scale – a mineral residue precipitated from the geothermal fluid – can inhibit fluid flow and block a pipe. A better understanding of the severity of the scaling may improve the choice of mitigating options.
3. Integrity monitoring for casing and tubing leaks.
The compromised integrity of the casing and tubing may lead to contamination of ground and subsurface aquifers.
An installed DTS system provides many additional monitoring opportunities. The efficiency of the geothermal plants may be greatly improved by combining temperature data with subsurface point pressure data. Distributed temperature sensing channels may be added to monitor surface processes. Another geothermal energy application of DTS systems in localization of overheated areas that allows mitigating the hotspots.
If you would like to purchase DTS (Distributed Temperature System), please contact us: or +1 617 558 98 58

Fiber Bragg grating strain sensors in prototype testing

FBG strain sensors in prototype testingStrain measurement is imperative during prototype design and testing. Strain measurements ensure that materials perform as they should and that the equipment is safe and durable. Measuring strain is crucial for testing complex structures, like aircraft, turbines, etc. There are multiple ways in which stress can be measured; however, it is widely accepted that FBG sensors are the most efficient way of strain measurement. FBG sensors provide multiple advantages over other methods: 1) high sensitivity; 2) small size; 3) ability to be mounted on any surface; 4) immunity to electromagnetic interference; 5) reliability even in harsh environments; 6) low sensitivity to vibration and heat.

FBG strain sensors are used in wing load testing to determine the structure’s performance and possible limitations under the lifting forces during flight. There are several benefits that FBG strain sensors offer to the aerospace field for this type of application. For instance, FBG technology provides strain measurement using a big number of continuous sensors which ensures maximum coverage from a single optical fiber. The immunity to electromagnetic interference, radio frequency interference, and other electrical influences makes FBG strain sensors ideal for use in hazardous environments, such as flight. Moreover, FBG sensors are less cumbersome to install. In addition, the FBG strain sensor prices are expected to decrease by 20% which will open up new opportunities for various markets.

The repeated loading and unloading of material causes fatigue. It is estimated that around 90% of structural failures are a result of fatigue. To determine the breaking point of a structure, fatigue tests are performed. The tests indicate the number of loading cycles until failure. FBG sensors are able to provide real-time data on strain fields and load distributions. The immunity to both low and high temperatures enables the sensors to be monitored during the high-temperature cure phase of composite fabrication. The fatigue life of an FBG strain sensor far surpasses that of other methods of strain measurement.

The tendency to build longer wind turbines with longer blades complicates the maintenance. The design of stronger, lighter materials is necessary, however small imperfections during the manufacturing process can cause failures. FBG strain sensors may provide real-time knowledge of load distributions and turbine blade shape. This data will provide valuable information on the needed adjustments to the blades manufacturing.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. If you have any question about FBG strain sensors, please contact as

Fiber Bragg grating sensors in aerospace applications

FBG sensors in aerospace applicationsAll engineering infrastructures undergo aging. The damage that appears over time is a consequence of the loads applied to them, therefore regular maintenance actions are required in order to predict the lifetime of these structures and lengthen it, which, in turn, will aid in avoiding catastrophic failures. Aviation-related infrastructures demand the highest levels of damage detection as these structures are overwhelmingly built according to a damage-tolerant principle. The structures for aerospace are designed to withstand damages with certain characteristics. Damage-tolerant design involves considerable effort for structure inspection. The inspections and maintenance tasks need to be periodic and scheduled; these are essential for safe and efficient operations.

Automation of the inspection processes is a point of capital importance to reduce inspection efforts, as maintenance is time-consuming and costly. Fiber Bragg grating sensor systems can perform real-time inspection which leads to a reduction of maintenance costs and improved the reliability and performance of the structures. Therefore, there is great interest in developing FBG sensors from the industry and academia. The most promising sensors are FBG strain sensors, FBG temperature sensors, FBG accelerometers, etc.

The intrinsic capabilities of FBG sensors, such as insensitivity to electromagnetic radiation, lightweight, small size, high sensitivity and resolution, and, most importantly, their suitability to be embedded into structures, make them suitable for most aerospace applications.

Among different approaches to a maintenance system based on FBG sensors deployment are: 1) single-point sensors; 2) distributed sensing, including distributed temperature systems. Distributed temperature sensing (DTS) systems are optoelectronic devices that measure temperatures by means of optical fibers functioning as linear sensors. Temperatures are recorded along the optical sensor cable, thus not at points, but as a continuous profile. High accuracy of temperature determination is accomplished over great distances.

The successful application of FBG sensors to aircraft requires the sensors to provide reliable and accurate information about the condition of the structure and to reduce economic losses caused by unproductive downtimes. At this moment, FBG sensors and FBG based systems, such as DTS, are the most appropriate solution to most aerospace needs.

Optromix will write a tailored fiber Bragg grating-based on your specific requirements, which can be used with any type of optical fiber sensor technology. We will make sure to analyze your fiber optic applications and deliver the most suitable solution.

If you would like to purchase FBGs, please contact us: or +1 617 558 9858