Fiber Optic Equipment Goes Biocompatible and Implantable thanks to Hydrogel Fibers

FBGs used in hydrogel fibersA biocompatible and highly stretchable optical fiber made from hydrogel may be implanted in the body to deliver therapeutic pulses of light or light up at the first sign of disease. This hydrogel fiber was developed by researchers from MIT (Massachusetts Institute of Technology) and Harvard Medical School. Hydrogels have already shown significant potential in everything from wound dressings to soft robots, but until now their fiber optic applications have been limited from their lack of toughness. Hydrogels are made of hydrophilic polymer chains that absorb up to 90 percent water. Such fiber optic products aren’t very strong or durable, but by adding glass tiny fibers the researchers created a tough, bendable, stretchable material.

In other words, a hydrogel is an extremely absorbent type of gel, a network of simple polymers that can contain up to 99,9% water, by weight. As the walls of this hydrogel, the material lining the interior of an optical fiber is clear but tuned to produce a phenomenon called total internal reflection. This means that light that moves at certain angles from the cable’s core material to its lining will be entirely reflected. By tuning hydrogel to create the same effect, scientists and engineers from MIT created a form of biocompatible optical cable. Getting light into the body is important: in the most basic sense, pulses of light are information, and having a hard-wired line of communication to implanted technology will be essential for development. However, it should be noted, such a wireless technique is still too unreliable for most people to bet their lives on, and it’s also notoriously hard on power consumption.

The researchers say that fiber optic products may serve as a long-lasting implant that would bend and twist with the body without breaking down. The researchers also have devised multiple recipes for making tough but pliable hydrogels out of various biopolymers. Plus the team has come up with ways to bend hydrogels with various surfaces such as metallic sensors and LEDs. Each optical fiber transmitted light without significant attention or fading. These fiber optic devices also found that fibers could be stretched over seven times their original length without breaking. Such modern fiber optic products can be used for long-term diagnostics, to optically monitor tumors or inflammation.

In other words, hydrogel fibers are interesting and provide a compelling direction for embedding light within the human body. Only considerable efforts in optimizing and managing the physical and mechanical properties of fibers will enable practical applications of medical relevance.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators, and multiplexers, Distributed Temperature Sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world.

If you are interested in Optromix fiber optic products, please contact us at info@optromix.com

Fiber Optic Products Key to Optimised Fully Implantable Hearing Aids

FBGs for hearing aidsModern research allows creating more and more biocompatible and highly stretchable fiber optic products. The optical fiber may one day be implanted in the body to deliver therapeutic pulses of light up at the first sign of disease. The world’s healthcare providers are increasingly looking to advanced biomedical instrumentation to enable more efficient patient diagnosis, monitoring, and treatment. Fiber optic equipment can be used in humans (clinical), in animals (veterinary), or other living organisms (life sciences), and, depending on the intended use, can be for diagnostic, therapeutic, or intensive care uses in clinical applications, research, and preclinical development, or laboratory testing.

The joint Austrian-Serbian team is moving closer to developing a fully implantable hearing aid. The technology is based on completely contact-free fiber optic equipment that senses the tiniest ossicle movements and use them to stimulate the acoustic nerves. The weak spot of the fully surgically implantable hearing devices is the microphones, which receive sounds and use a sophisticated process to transform them into impulses for the acoustic nerves. It is important that such microphones can function error-free inside the human body for many years. Nowadays this is only possible to a limited extent, so now solutions are urgently needed.

New fully implantable hearing aids can overcome a wide range of patient’s problems. Even state-of-the-art hearing aids often require parts outside the ear. This has many disadvantages for people who wearing hearing aids. For example, parts of the ear often become inflamed and the wearer’s own voice sounds distorted. Plus traditional hearing aids can be stigmatized if the device is visible.

The use of contact-free fiber optics measuring devices to detect sounds is the one highly important advance. Such fiber optic products would allow the microphone to be positioned inside the ear. This technology is based on low-coherence interferometry, a method which picks up superimposed sound waves. The ability to pick up sound from the ossicles is a huge advantage because it fully preserves the natural amplification function distortion and feedback.

The team of Austrian-Serbian scientists needed to address a number of fundamental requirements. For instance, they had to develop the operative procedure for the implantation, as well as the means of “targeting” the laser used for sensing. In the process of research scientists used artificial and animal models, which allowed them to optimize the quality of the ossicle vibration sensing system. The recently published findings confirm the effectiveness of the technology and that, in principle, could be used inside the ear for long periods. Aspects such as system miniaturization and electricity consumption will also be addressed by the team.

Optromix is a fast-growing seller of such products from the fiber Bragg grating (FBG) line of products: fiber Bragg grating sensors, FBG interrogators, and multiplexers and, of course, Distributed Temperature, Acoustic, and Strain Sensing systems (DTS). Our major goal is to deliver the best quality of fiber optic sensors to our clients. Optromix creates and supplies a broad variety of excellent fiber-optic solutions for the monitoring of various facilities all over the world.

If you are interested in Optromix fiber optic products, please contact us at info@optromix.com

New Types of In-Body Fiber Bragg Grating Sensors for Biomedical Research and Treatments

FBG sensors for biomedical researchThis year, for the first time ever, scientists have fabricated sensing elements known as fiber Bragg gratings (FBGs) inside fiber optic products designed to dissolve completely inside the body. Such bioresorbable fiber Bragg gratings could be used for in-body monitoring of bone fracture healing and for safer exploration of sensitive organs such as the brain. FBGs are optical elements which inscribed in optical fibers. Fiber Bragg gratings are commonly used for applications such as structural health monitoring of bridges or tracking the integrity of airplane wings. FBGs didn’t exhibit characteristics preferred for use in the body until now. According to the researchers, such new fibers should be safe for patient’s health even if they accidentally break, because these fibers have a design that allows them to break down similarly to dissolvable stitches. These fiber Bragg grating sensors don’t need to be removed after use and would enable new ways to perform efficient treatments and diagnoses in the body. New fibers have a diameter twice as that of human hair. They have the ability to dissolve into solutions with temperature and pH resembling those of the human body, within typical times that span between several hours and a few days.

The new bioresorbable optical fiber Bragg gratings could be used to sense pressure at joints or act as tiny probes that can safely reach and assess the heart and other delicate organs. In addition to this, these fiber Bragg grating sensors could simultaneously deliver the laser beam and provide the accurate real-time temperature sensing necessary to monitor the laser ablation process. In other words, this new ability can be used for improving the laser-based techniques for removing tumors. On the basis of the new aforementioned applications of fiber Bragg gratings, a variety of types of interconnected structures in or on bioresorbable optical fibers can be created over the next years. It will allow a wide range of sensing and biochemical analysis techniques to be performed inside the body.

The researchers developed a special type of glass made of phosphorous oxide combined with oxides of calcium, magnesium, sodium, and silicon to create optical fiber Bragg grating sensors that could be safely used in the body. Such glass combines excellent optical properties with biocompatibility and water solubility. The properties of the optical fibers can be tuned by properly changing the glass composition.

A type of grating known as tilted optical fiber Bragg grating allows some of the reflected light to escape from the fiber core and enter into the surrounding cladding. Tilted gratings are often used for sensing because changes on the fiber cylindrical surface modify the back-reflected light in a way that can be monitored. Scientists and engineers created both tilted and standard optical fiber Bragg gratings to understand how the parameters used for inscription affected the grating sensing characteristics. Nowadays the researchers are performing systematic experiments to better understand how the fiber composition and ultraviolet laser irradiation conditions affect the speed at which the fiber Bragg grating dissolves. The dissolving and sensing properties of the fiber Bragg gratings will need to be studied in animals before being used in people.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Optromix, Inc. is a top choice among the manufacturers of fiber optic devices.

If you have any questions, please contact us at info@optromix.com

Advanced Fiber Optic Solutions Further Biomedicine

FBGs for biomedicineNowadays the production of optical fibers is robust and flexible enough to address an exciting new range of biomedical applications. Fiber optic applications in general and they are in biomedicine have gained momentum in recent years. The optical fiber has been used primarily for endoscopy and laser power delivery, but now a wide base of academic and corporate-funded studies is exploring both in vivo and in vitro areas, with a number of new applications entering full-scale manufacturing. This growth has been fueled by a list of capabilities, including entering fuel-scale manufacturing. This growth has been fueled by a list of capabilities, including:

  • electromagnetic interference (EMI)-free transmission of energy and signals
  • small diameter
  • biocompatible coating
  • high mechanical flexibility
  • image transmission
  • the ability to sense pressure, temperature, chemicals, and strain.

The great capabilities suggest the introduction of fiber optic products in a wide range of applications. Such a broad range of applications requires a wide selection of fiber optic products with designs ranging from large-core, large-diameter multimode (MM) optical fibers for high-power laser light delivery to small-core, reduced-diameter single-mode (SM) optical fiber for in vivo sensing. Additional requirements demand advanced coatings because special coatings enable reduced thickness and greater tolerances: polyimide, for instance, in contradistinction to an acrylate, can withstand temperatures up to 300ºC as well as autoclave sterilization.

Device miniaturization is required for in vivo applications: fiber optic products and based on the fiber optic systems typically need to localize within a catheter tube where typical sizes for surgical procedures, such as coronary angioplasty, range from 5F to 8F (1473-2286 μn diameter). A standard optical fiber with a 245 μm coating diameter can fit within this catheter space, but it will need to accommodate other devices as well, including guide wires and manipulation tools. Beyond dimensions, an optical fibers stiffness must be considered as it can impact the flexibility of the overall catheter assembly, affecting the ability to guide the catheter correctly.

It is important to note that fiber optic products do not contain any electrically conductive or magnetic materials. Any fiber optic equipment can be considered free from electromagnetic interference (EMI). In other words, fiber optic products can be used in magnetic resonance imaging (MRI) devices and in close proximity to radiofrequency (RF) electrosurgery tools used for cutting, coagulating, desiccating, and fulgurating tissue. Alternative techniques require an electrical sensor element, making them not only unsuitable for MRI and RF use but also require a separate signal line for each sensor element, which adds to the cross-sectional area. Fiber optic solutions, in contrast, imply thousands of uniquely identifiable sensor elements and still require only the single line of fiber, without additional sacrifice to the diameter. This characteristic enables the transmission of multiple messages along one channel of communication. Such transmission often uses specially modified regions of the core called fiber Bragg gratings (FBGs).

In addition to this, one of the most impressive up-and-coming biomedical applications of fiber optic products is that of 3D shape sensing to facilitate procedures such as coronary angioplasty with minimal use of x-ray-assisted guidance. 3D shape sensing and distributed in vivo pressure sensing were not feasible, but optical fibers have made them possible.

Additionally, fiber optic devices have traditionally been developed and sold primarily for high-power laser applications. But their new generation and exactly a new generation of fiber optic probes allow both outputs of light in a particular format and collection of reflected light back into the optical fiber.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Optromix, Inc. is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

 

 

Benefits and Risks of Real Time Thermal Rating Systems

FBG sensors in real time thermal ratingA real-time thermal rating system has been developed initially for overhead transmission lines using actual meteorological data and real-time conductor temperatures and line loadings. Such a real-time thermal rating system provides much higher ampacity ratings than other conventional methods. A natural convective heat equation is developed for stranded conductors. The temperature of the conductor is solved directly without resorting to an iterative solution.

The temperature of an asset itself, such as a power cable, is a key for a real-time thermal rating system. This can be measured continuously if equipment utilizes a distributed temperature sensing (DTS) system. Distributed temperature sensing optical fibers are installed along with the fiber cable. The fiber cable can also be utilized for telecoms purposes as DTS systems typically utilize standard telecoms fiber optics.

Thermal headroom typically is determined using static ratings which are based upon probabilistic methods and are representative of worst-case scenarios. The “static” design calculation methods provide simple and conservative estimates of network capacity. In reality, networks can be complex and operational ratings can be influenced by multiple factors including weather conditions and loading. Soil condition, buried depth, burial configuration, cable size, and type must be considered for underground equipment.

The real-time thermal rating system works with such assets as:

 

  • Underground and subsea cables

 

Experience has shown that cable depth, soil type, and the shape of the load curve have a material impact on ratings. The real-time thermal rating system can determine actual thermal headroom indicating whether some unused network capacity can be released or locations where networks are constrained.

 

  • Overhead lines

 

  • Sag-based
  • Tension-based
  • Temperature-based
  • Current rating-based

 

  • Transformers

 

The real-time thermal rating systems for transformers utilize measurements including transformer load, ambient, and transformer temperatures based on the equations set out in IEC 6007. With the exception of emergency ratings, P15 recommends using an average ambient temperature and a weighted average that products the same aging if the temperature varies over a load cycle.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators and multiplexers, distributed temperature sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems.

If you are interested in Optromix distributed temperature sensing systems, please contact us at info@optromix.com