Articles

about Fiber Bragg Gratings (FBG), FBG Sensors and Monitoring Systems

The noise of Distributed Acoustic Sensing is suppressed

on February 17, 2020

ear-2972890_640A technique of noise suppression used f-x deconvolution and the wavelet transform allows reducing jump edges in the phase noise of distributed acoustic sensing. The DAS system has been already tested and demonstrated great results of high performance in terms of increasing the quality level of seismic waves. Distributed acoustic sensing provides relatively stable phase sensitivity as well as better the signal-to-noise ratio, leading to more remarkable features of seismic wave signals.

To be more precise, distributed fiber optic sensing based on Rayleigh scattering is not new and used in various applications to control current assets and employ new resources. It is possible to apply such DAS systems to provide efficient and comparatively inexpensive development of perimeter security systems and produce defensive redundancy.

Different methods have been used to apply Rayleigh scattering in the development of distributed fiber optic sensors. For instance, a distributed sensing technology of optical time-domain reflectometry (OTDR) was used for the first time over three decades ago. Nowadays a noise suppression technique based on f-x deconvolution and the wavelet transform is considered to be the most efficient for distributed acoustic sensors.

The thing is that f-x deconvolution is regarded as a traditional technique of seismic data processing. The application includes the treatment of seismic signals by fiber optic sensors as a two-dimensional (2D) image in terms of time and channel. The DAS system enables us to extract the signal characteristics of each channel with a comparatively stable noise distribution between channels. 

Usually, such techniques as deconvolution or the wavelet transform are applied separately in traditional seismic noise processing but here these techniques are combined in distributed sensing technology to minimize the number of wavelet transform layers and reach effective low-frequency noise suppression. The DAS system offers such benefits as comparatively stable phase sensitivity over the whole sensing range, the reduction of jump edges in phase noise, and more evident features of seismic wave signals.

The operating principle of distributed acoustic sensing used f-x deconvolution is based on “the assumption that desired signals are continuous and predictable whereas random noise is incoherent and unpredictable.” DAS sensors are actively used for oil and gas exploration. Thus, the noise compression technique improves the phase noise performance of the DAS system. Moreover, the jump edges from the noise of fiber optic sensors are reduced with the same peaks and valleys compared to the original signals which play a crucial role in calculating the time delay of peaks and valleys between various channels. 

Optromix is a DAS system manufacturer that provides top of the line distributed acoustic sensing systems suitable for monitoring of commerce networks. If you have any questions or would like to buy a DAS system, please contact us at info@optromix.com

read more
editorThe noise of Distributed Acoustic Sensing is suppressed

Extremely precise FBG sensors promote smaller chips

on February 10, 2020

electricAn electrical engineer from the Netherlands has developed a fiber optic sensor based on fiber Bragg grating technology (FBG)with a super-precision of less than the size of an atom. Such FBG sensors favor the production of smaller chips, which in turn are required to develop faster computers.

The developed fiber sensor allows measuring deformations less than the width of an atom is possible to be measured. Thus, these fiber optic sensors offer a highly promising application that enables to improve the accuracy of current machines. It should be noted that even the slightest deformation of the wafers in machines may result in serious problems.

“These wafers are actually quite stiff, but because they are moved about at such great speed, they are subject to g-forces that slightly deform them. Measuring this deformation by FBG sensors gives the opportunity to compensate for it in some or other way, and opens up the possibility of producing even smaller chips.”

This is the main reason why the engineer began developing a fiber sensor based on FBG technology, enabling sensing these deformations of roughly one nanometer per meter. The operating principle of this extremely precise FBG sensor is that it is possible to measure the deviations in the frequency of laser beam light with high precision, as well as the principle used by fiber Bragg grating – an optical fiber of sorts treated in such a way that it becomes opaque for a very specific color of light.

Herewith, such a resonance frequency is dependant on the extent to which the optical fiber is stretched. Therefore, fiber Bragg gratings can be employed here to the moving parts as a way to measure the wafer’s deformation. The fiber optic sensing system based on FBG technology has been already tested in the lab. Although modern machines require dozens of such fiber sensors, it is not a challenge because FBG sensors are not expensive and light-weight.

The engineer claims that it succeeded in achieving the accuracy of 5 nanometers per meter, thus, the fiber optic sensor of a few centimeters in length allows measuring the deformation of a couple of dozen picometers, herein, that is less than the diameter of an atom. Nevertheless, several challenges have to be overcome before this incredible level of precision could be reached due to fiber Bragg gratings.

The first challenge is a need for sophisticated stabilization techniques to provide that the laser beam light has the right frequency. However, the main problem is considered to be the resonance frequency of the FBG sensor that depends on not only the deformation but also the temperature. 

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorExtremely precise FBG sensors promote smaller chips

Fiber optic seismic sensors from submarine cables

on February 3, 2020

A team of researchers from France proposes for the first time the opportunity to detect the propagation of seismic dmitry-bayer-GH8fTXN1P5k-unsplash (1)waves on the seafloor by fiber optic seismic sensors made from submarine telecommunications cables. The researchers confirm that the potential application of such seismic sensors includes the use of existing infrastructure for the detection of earthquakes, as well as swell and underwater noise.

It should be noted that about 1.2 million kilometers of telecommunications cables cut across the ocean floor that is equal to three times the distance from the Earth to the Moon. The cables consist of optical fibers leading to simple communication by phones, SMS or e-mail. Herewith, the optical fibers could soon find a new application, that of detecting acoustic and seismic waves.

To be more precise, the researchers apply a 41 km-long fiber cable installed at the coast of Toulon in southern France for their tests to obtain data from the fiber optic sensors of the underwater observatory that is at a depth of 2500 m. Moreover, a special technique based on small impurities in the optical fibers is used for sending light back to the transmitter.

The thing is that “by stretching or contracting the optical fiber, the passage of a seismic or acoustic wave alters the distance between these impurities, and thus the backscattered signal, by a tiny amount.” Nonetheless, the researchers have to prove the opportunity to detect these differences in submarine fiber optic cables because of the insulating layers that surround the optical fibers.

Thus, the pulses of light put at the optical fiber and allow analyzing the backscattered signal. The researchers use the 41 km of optical fibers for tests and change them into more than 6000 fiber optic seismic sensors. Moreover, such fiber sensors enabled to detect a magnitude 1.9 earthquake that happened during the test at each of the sensing areas with a sensitivity close to that of a coastal seismic station, even despite the fact that it was located over 100 km from the fiber optic cable.

Nevertheless, the benefits of seismic sensors do not complete: the sensing points of fiber cable are highly sensitive to waves that go through the ocean, for instance, those created by the swell. The influence of waves on the seafloor near the coast, as well as the effect on the abyssal plain, where they produce “seismic background noise” was captured.

Finally, the fiber optic seismic sensors make it real to find out for the first time how thee tiny vibrations that permanently interact with the Earth’s interior are created, allowing specialists in geophysics to examine its structure. Also, such fiber sensors may overcome a wide range of scientific and societal challenges like earthquakes, coastal erosion, the interaction between life, the oceans and the solid Earth, etc.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorFiber optic seismic sensors from submarine cables

Distributed fiber optic sensing applies an entangled quantum network

on January 27, 2020

Quantum_NetworkQuantum-enhanced metrology is regarded as a popular area of research for years because of its promising applications, varying from atomic clocks to biological imaging. According to the researches, a non-standard distributed sensing system offers significant advantages compared to traditional fiber optic systems.

These researches help a team of scientists from Denmark to carry out an experiment on distributed fiber optic sensing and the benefits of employing an entangled quantum network to detect an averaged phase shift among numerous distributed sensing nodes. The fiber optic sensing technology uses several methods that enable collecting more accurate measurements in different areas.

The purpose of the new study is based on squeezed light and homodyne detection that is now established distributed fiber optic sensing techniques. The team aims at “measurement of a global property of numerous spatially separated objects and investigate whether probing these objects simultaneously with entangled light led to more accurate results than probing them individually”. 

Thus, the application of a quantum network to probe the objects simultaneously allows distributed sensing systems with far higher accuracy than that attainable when examining probes individually. To be more precise, the team measures the phase shifts (set with wave plates to a known value) by the fiber optic system that sends a weak laser beam through and detects the change in the light’s phase quadrature with homodyne detectors.

The benefit of applying distributed fiber optic sensing plays a really important role when it is necessary to measure the property of numerous objects connected in an optical network. Nevertheless, the losses in the network and detectors are required to be kept low in order to successfully raise the accuracy, alternatively, the quantum benefit of distributed sensing disappears.

The researchers succeeded in the experimental demonstration of the benefits connected with employing multi-mode entanglement for distributed fiber optic sensing. The thing is that the benefits have been previously predicted, however, only highly idealized scenarios and experimentally very difficult probe states or detection methods were taken into consideration. The developed fiber optic system demonstrates that these benefits are available even with current noisy sensing technology.

The fiber optic system finds potential applications in various areas of research and technology development. For instance, they provide a high sensitivity of molecular tracking devices, atomic clocks, and optical magnetometry methods. Moreover, the distributed fiber optic sensing gives valuable information about how quantum-enhanced metrology can be reached utilizing readily accessible technologies, for example, squeezed light generation and homodyne detection.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorDistributed fiber optic sensing applies an entangled quantum network

Distributed sensors for structural health monitoring of bridges and dams

on January 20, 2020

damsNowadays distributed fiber optic sensors remain a subject of great interest for constant structural health monitoring of huge structures, for instance, bridges or dams. Herewith, the more sensing points there are, the more effective monitoring the sensing system offers. Thus, newly improved distributed sensors with 1 million sensing points provide prominently faster detection of structural problems that are now accessible.

Fiber optic sensors allow accurately detecting erosion or cracking before a dam fails. Therefore, earlier detection of a problem by fiber optic sensing systems may lead to its possible prevention from later deformation or provision of sufficient time for evacuation procedures. Fiber sensors are considered to be perfect for controlling infrastructure since they suit for use in harsh environmental conditions and in areas that lack nearby power supply.

The operating principle of distributed sensors is based on “changes in the structure at any of the sensing points along the optical fiber that cause detectable changes in the light traveling down the fiber”. Despite the high popularity of distributed fiber optic sensors, the main applications of sensors include the detection of leaks in oil pipes and structural health monitoring for landslides along railroads.

It should be noted that the novel fiber optic sensing system enables tracing train and temperature changes from 1 million sensing points over a 10-kilometer optical fiber in less than 20 minutes, while strain parameter demonstrates deformation or mechanical stress on an object of interest. Herewith, the new distributed sensor is regarded as to be about 4.5 times faster than previous fiber sensors with 1 million sensing points. A larger number of sensing points require fewer optical fiber units for structural health monitoring of an entire structure resulting in cost reduction.

A large density of sensing points makes distributed fiber optic sensors suitable for such applications as avionics and aerospace, where every inch of a plane wing has to be controlled properly. According to researchers, the conventional technique of generating the continuous signal in fiber sensors undertakes distortions in the fiber optic system at higher laser powers. This problem has been solved by using the approach known as Brillouin optical time-domain analysis.

The fiber optic sensor has been already tested and showed the opportunity to measure the temperature of a hot spot to within 3 degrees Celsius from the end of a 10-kilometer long optical fiber. Additionally, it is planned to improve the distributed sensor and make it even faster resulting in the further reduction of the acquisition time. Future enlargement of sensing point density will promote the fiber sensors being used in new fields, for example, biomedical applications.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorDistributed sensors for structural health monitoring of bridges and dams

FBG sensors measure pH to study tissue growth

on January 13, 2020

A team of researchers from the U.S. continues developing a fiber optic sensor based on fiber Bragg grating or FBG technology that helps to study tissue growth in the lab. cellsThe operating principle of the FBG sensor is based on a light-based signal to measure pH that is considered to be a highly important quality in cell-growth studies.

It should be noted that compared to traditional sensing systems, it is possible to use the fiber sensor to control the environment in cell culture for weeks at a time without the necessity to bother the cell-growth environment. For several years, the researchers have designed photonic sensors that apply optical fibers etched with a fiber Bragg grating (FBG). Temperature or pressure changes lead to transform the wavelengths that are able to get through the fiber Bragg grating.

Such a sensing system has been already tested and shows that fiber sensors with Bragg gratings can be easily adapted to pH measurement. The application of a fiber optic-based platform featuring FBGs promotes the development of a fiber optic sensor that “measures the heat released by pH-sensitive chromophores upon absorption of light”.

Thus, due to this fiber sensing system, the researchers have succeeded to compare visible light absorption by the chromophores to the heat released and changes in the fiber Bragg grating signal over a pH range of 2.5 to 10. To be more precise, firstly, the team fills a petri dish with a solution made with red cabbage juice powder that transforms color in response to changes in pH.  Then the researchers put one optical fiber above the dish, connecting the optical fiber to a laser pointer, and shine the laser beam into the sample. 

Additionally, they install a second optical fiber with FBGs as the temperature sensor in the cabbage juice solution. Herewith, the team controls manually the pH levels in the solution. Shining the solution above, it absorbs the laser beam to different degrees depending on its pH level. The fiber optic sensor operates as a thermometer and detects these tiny changes in the juice’s heat.

A second color into the solution added by the researchers demonstrates that the fiber sensor offers its operation over a wide range. Moreover, further researchers show that the pH measurements by the FBG sensor are precise to plus or minus 0.13 pH units and are stable for at least three weeks.

Finally, it is planned to perform tests on “how cell cultures are affected by the slight, temporary temperature changes (about 1 to 2 kelvins) in localized areas of the sample that occur as a result of this measurement technique” by applying the developed fiber sensing system. Also, the temperature changes are required to reduce in the future as much as possible because over time the fiber sensors could be developed to control the growth of tissue in the human body

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorFBG sensors measure pH to study tissue growth

Fiber optic sensors make cities “smarter”

on December 30, 2019

smart-4168483_640Companies from the U.S. and Japan have developed for the first time a new fiber optic sensing technology that allows delivering traffic-related data to smart cities without tearing up streets. To be more precise, in smart cities connected intersections and traffic fiber optic sensors play a crucial role in the whole infrastructure. 

Thus, the combination of intersections with fiber sensors may greatly affect improving traffic flows resulting in congestion and pollution reduction, finally, improving life quality, resident safety and raising economic activity and productivity. Additionally, these fiber optic sensors may promote pedestrian safety and save lives in different cities.

It should be noted that data information on traffic patterns and road congestions required to make the best application of such fiber sensing systems. Fiber optic technology makes it possible to get the data without physical inspections, putting in new infrastructure or tearing up streets.

The concept has been already tested and demonstrated the opportunity to apply network infrastructure with existing fiber optic cables already installed in the ground as distributed optical sensors to compile data on city traffic patterns, road conditions, road capacity, and vehicle classification information.

Nowadays it is planned to enlarge tests of the fiber optic sensing technology and to decide how it can be employed in smart cities. The main purpose of technology is regarded as to enable “existing optical fiber providers to deliver smart city traffic-related data without tearing up roads or sidewalks”

The manufacturers apply new fiber optic technology and combine fiber sensors with artificial intelligence-based software to provide “intelligent traffic monitoring including the sensing of vehicle density, direction, speed, acceleration, deceleration and more”. The thing is that until recently it was required to install purpose-built optical fiber in very shallow spaces in the ground with fiber Bragg grating at predetermined intervals to collect and analyze this type of data information.

Today the proposed fiber optic solution suggests utilizing optical fibers already in the ground. The representatives of the companies confirm that these fiber optic sensors may lead or improve various public functions, for example, they allow first responders to identify and respond to gunshots as well as increasing municipalities’ capability to more quickly and efficiently detect earlier deterioration of bridges, tunnels, and other infrastructure.

Application of a single FBG interrogator in the distributed multi-parameter fiber optic sensor system estimated different characteristics of back-scattering light, which can be utilized to determine the static strain, dynamic strain, acoustics, vibrations and temperatures for each optical fiber segment.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorFiber optic sensors make cities “smarter”

Embedded fbg strain sensors for robotic applications

on December 9, 2019

hand-3308188_640Fiber optic technology continues finding new applications in various fields including medicine, biomechanics, space, oil industry, geophysics, etc. According to researchers from the U.S., fiber optic sensors are regarded as uniquely suited for utilizing in robotic hands. To be more precise, the researchers have developed a three-fingered soft robotic hand with multiple embedded fbg strain sensors resulting in emerging of a new type of stretchable fiber sensor.

The application of fiber optics allows installing 14 fbg strain sensors into each of the fingers in the robotic hand, therefore, it can “determine where its fingertips are in contact and to detect forces of less than a tenth of a newton”. Moreover, the researchers confirm that the new stretchable optical sensing material could find highly promising application in a soft robotic skin to offer even more feedback in the future.

Modern robotic hands include more strain sensors than is typical today, thus, they can operate autonomously and react safely to unexpected forces in everyday environments. It should be noted that human skin consists of thousands of tactile sensory units only at the fingertip, while a spider has about hundreds of mechanoreceptors on each leg, however, nowadays conventional humanoid includes only 42 fiber sensors in its hand and wrist.

Herewith, it is difficult to add traditional force or pressure sensors because of complex wiring, it is prone to breaking and susceptible to interference from different electromagnetic tools. Nevertheless, it is possible to embed several fbg strain sensors in a single optical fiber. The operating principle of such a robotic hand is based on several fiber sensors in each of the fingers that are connected with 4 optical fibers, though a single fiber can be used for this purpose.

Additionally, the embedded fbg strain sensors offer such an advantage as the immunity to electromagnetic interference. Other benefits of FBG sensors include:

  • Fiber sensors are passive and can be used in explosive environments.
  • Non-conductivity of fibers.
  • Opportunity to install more than 80 fiber sensors per optical fiber
  • The fast response of FBG sensing systems.
  • Fbg strain sensors do not corrode and have a small diameter.

Robots used in the industry provide extremely accurate manipulation with only limited fiber sensors, herein, they operate in controlled environmental conditions where people do not risk to do it. Nevertheless, the development of soft robots, which will interact routinely and safely with people, require careful attention to tactile and force sensing. That is why fbg strain sensors are considered to be a perfect fiber optic solution.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fbg strain sensors. If you have any questions, please contact us at info@optromix.com

read more
editorEmbedded fbg strain sensors for robotic applications

Distributed temperature sensors of high precision for Raman-based sensing

on December 2, 2019

pipeline-58142_640A new distributed temperature sensor (DTS) system has been developed to perform optimization of the temperature precision with the enhanced temperature sensitivity of backscattered spontaneous Raman scattering. The DTS system is based on the difference in sensitive-temperature compensation. 

Distributed temperature sensors apply the dual-demodulation, self-demodulation and double-end configuration principles. The DTS system has been already tested and demonstrates great results: the temperature precision is considered to be 12.54 °C, 8.53 °C and 15.00 °C along the 10.8 km under the traditional R-DTS systems, respectively.

It is possible to use the sensing system with difference sensitive-temperature compensation for the dual-demodulation, self-demodulation, and double-end configuration R-DTS, herewith, this fiber optic sensing technology enables to make the temperature precision better than 1 °C for these three demodulation systems.

The operating principle of Raman Distributed Temperature Sensor is based on “specific optical effects along the sensing optical fiber to obtain a spatially distributed temperature profile”. Compared to traditional discrete sensing techniques, R-DTS systems provide unique attributes and capabilities.

It should be noted that spontaneous Raman scattering of distributed temperature sensors uses the energy exchange in the optical fiber, therefore, when the pulsed light quantum and fiber optic material molecule leads to an inelastic collision in optical fiber, this will create an anti-Stokes light.

The thing is that the anti-Stokes light is regarded to be very sensitive to the surrounding temperature, and it allows modulating the environmental temperature using the principle of Raman scattering. Nowadays, such DTS systems find their application in the temperature safety monitoring thanks to the benefits of distributed measurement, long-distance, and high spatial resolution, as well as in transport infrastructure, smart grid and gas pipeline, etc.

It is necessary to pay on the following parameters when you choose distributed temperature sensors with high-performance: temperature precision, temperature resolution, and spatial resolution. DTS systems can be used as an industrial temperature measurement system, for instance, the carrier density in the power cable can be measured by employing a specific temperature. Additionally, distributed temperature sensors allow locating the position of pipeline leakage.

Tests demonstrate that the temperature demodulation system based on distributed temperature sensing offers higher temperature precision and resolution of the self-demodulation than the dual-demodulation system due to the signal-to-noise ratio. Moreover, the double-ended configuration for DTS systems allows avoiding the measurement error based on the change of local external attenuation.

If you want to obtain a highly efficient distributed temperature sensing system, you should choose the Optromix company. Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for monitoring worldwide. Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, distributed acoustic sensing (DAS) systems, distributed temperature sensing (DTS) systems. If you are interested in DTS systems and want to learn more, please contact us at info@optromix.com

read more
editorDistributed temperature sensors of high precision for Raman-based sensing

Compact FBG sensors control traffic density

on November 25, 2019

A new compact sensing system based on fiber Bragg grating technology has been designed to control urban traffic density up to 80 kph. road-4598095_640The sensing technology includes a 2.5-m-long and a 2-cm-high fiber optic sensor made from a combination of silicone addition rubber and fiber Bragg grating put inside a carbon tube.

The design of the compact FBG sensors allows monitoring and detecting the traffic density and car crossing in a single lane. It should be noted that such a sensing system has been already tested in real traffic and demonstrated quite a high detection rate of 98.946% based on the control of 1518 vehicles of various types and sizes.

To be more precise, traffic sensing systems are considered to be special devices that determine input data and information for other transport infrastructure systems. It is possible to install traffic sensors next to, above, into or onto a road’s surface. The fiber optic sensors control “the presence of a vehicle, vehicle speed, vehicle classification, wheelbase and number of axles, total vehicle weight, road axle load, and occupancy, all of which indicate the traffic flow quality”.

The thing is that sensing systems based on optical fibers provide the following benefits: robustness, precision, high sensitivity, electromagnetic and chemical resistance, electrical passivity and a broad temperature operating range. Additionally, it is possible to use fiber optic sensors in hybrid systems. The operating principle of fiber sensors is based on transmitting and receiving a laser or infrared beam from an emitter to a receiver.

Another type of fiber optic sensor is distinguished that is a micro-motion one. Such a fiber sensor operates using the increasing of optical fiber attenuation. Herewith, these optical fibers have special protective coatings and they are installed into a roadway. Nevertheless, their application is experimental, and these fiber sensors are not employed in general practice.

Also, the DAS technology (Distributed Acoustic Sensor) can be used for the same purposes. For instance, DAS systems apply a single optical fiber to control multiple traffic parameters, such as detecting a car, its direction, its speed, etc. However, FBG sensors require proper protection in order to avoid damage to the sensors. The use of composite fiber protection to the FBG sensors enables to successfully solve the current problem.

The high sensitivity of portable FBG sensors and success rates in determination vehicles are regarded as a good supposition for expanding research and future developments for monitoring automotive traffic. Nowadays researchers plan to improve the design of fiber sensors to provide a more stable sensitivity, as well as to expand the determination capabilities of the sensing system, and to produce the sensor for year-round application.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorCompact FBG sensors control traffic density