about Fiber Bragg Gratings (FBG), FBG Sensors and Monitoring Systems

Embedded fbg strain sensors for robotic applications

on December 9, 2019

hand-3308188_640Fiber optic technology continues finding new applications in various fields including medicine, biomechanics, space, oil industry, geophysics, etc. According to researchers from the U.S., fiber optic sensors are regarded as uniquely suited for utilizing in robotic hands. To be more precise, the researchers have developed a three-fingered soft robotic hand with multiple embedded fbg strain sensors resulting in emerging of a new type of stretchable fiber sensor.

The application of fiber optics allows installing 14 fbg strain sensors into each of the fingers in the robotic hand, therefore, it can “determine where its fingertips are in contact and to detect forces of less than a tenth of a newton”. Moreover, the researchers confirm that the new stretchable optical sensing material could find highly promising application in a soft robotic skin to offer even more feedback in the future.

Modern robotic hands include more strain sensors than is typical today, thus, they can operate autonomously and react safely to unexpected forces in everyday environments. It should be noted that human skin consists of thousands of tactile sensory units only at the fingertip, while a spider has about hundreds of mechanoreceptors on each leg, however, nowadays conventional humanoid includes only 42 fiber sensors in its hand and wrist.

Herewith, it is difficult to add traditional force or pressure sensors because of complex wiring, it is prone to breaking and susceptible to interference from different electromagnetic tools. Nevertheless, it is possible to embed several fbg strain sensors in a single optical fiber. The operating principle of such a robotic hand is based on several fiber sensors in each of the fingers that are connected with 4 optical fibers, though a single fiber can be used for this purpose.

Additionally, the embedded fbg strain sensors offer such an advantage as the immunity to electromagnetic interference. Other benefits of FBG sensors include:

  • Fiber sensors are passive and can be used in explosive environments.
  • Non-conductivity of fibers.
  • Opportunity to install more than 80 fiber sensors per optical fiber
  • The fast response of FBG sensing systems.
  • Fbg strain sensors do not corrode and have a small diameter.

Robots used in the industry provide extremely accurate manipulation with only limited fiber sensors, herein, they operate in controlled environmental conditions where people do not risk to do it. Nevertheless, the development of soft robots, which will interact routinely and safely with people, require careful attention to tactile and force sensing. That is why fbg strain sensors are considered to be a perfect fiber optic solution.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fbg strain sensors. If you have any questions, please contact us at

editorEmbedded fbg strain sensors for robotic applications

Join the conversation