FBG sensors application in VR technology

Fiber Bragg Grating sensors application in VR technologyIt is not a secret that fiber optic technology already has a wide range of different applications starting with medicine and ending with road monitoring. However, scientists still have a lot of spheres for FBG sensors implementation. And the VR ecosystem is one of them.

So one Korean company has developed motion capture suits based on fiber optic solutions. This company is a developer of virtual reality technologies that aims to create a fully integrated VR ecosystem with the usage of fiber Bragg grating sensors.

VR entertainment is becoming more popular and capturing the minds of consumers. Nowadays, VR equipment can be installed at homes and other VR-based devices. Its applications are very diverse and can be applied in many industries, including education and even defense.

The FBG suits based on fiber optic technology are considered to be the fourth generation VR technologies. This generation intends to make VR more exciting and easily accessible. The previously created motion capture devices were much more expensive and required experience to work with. However, the company has solved both these problems with the help of fiber optic technology.

The company found out that there were some aspects that prevent VR adoption, for example, high installation costs and a long list of limitations. However, with the application of fiber optic sensors, the maintenance costs can be greatly reduced which will lead to greater adoption.

A lot of VR systems working on the principle of inertial sensor technology have a great number of cameras to detect a person’s movements. On the one hand, this method provides more accurate results. However, it also provides too much information that is needed to be handled. This factor makes it difficult to participate simultaneously for many users. Moreover, inertial sensor technology can be influenced by electromagnetic fields and cause an error.

The alternative design was developed with the usage of FBG sensors. This fiber optic technology is based on recognizing a person’s position through the refraction of light in the fiber optic cable. Fiber optic sensors precisely measure joint movement. Moreover, it can be used for a long perspective, providing no errors. According to scientists, this is a new implementation of FBG sensors into the existing products.

Now the company plans to deliver suites based on FBG sensors for VR applications in various fields and for different producers. And scientists hope to work in this direction further.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Fiber Optic Solutions for fusion power plants

Fiber Optic Solutions for power plantsAccording to the researchers from the American university, the faster specialists can detect thermal shifts the faster they can prevent disruptive quench in the HTS magnets for fusion devices in power plants. That is why scientists hope to solve this issue with the help of newly developed fiber optic solutions.

Recently, fusion became considered a safe, constant, and carbon-free energy source. The HTS magnets play a crucial role in many such programs. It increases the necessity of different instruments such as sensors and controls that help magnets to work in severe environmental conditions of a fusion power plant.

The research team had an aim to prevent quenches in power plants that are based on magnetic-confinement fusion devices. Scientists also focused on the commercialization, availability, and simplicity in the conditions of the accelerating fusion’s viability as an energy source. They aimed to create a fiber optic system that would provide minimal risks and would be robust.

Scientists used optical fibers with fiber Bragg gratings (FBGs) as a promising instrument that can measure temperature. FBG reflects just one of the wavelengths that are determined by the spacing while most of the light passes through. The reflected wavelength can demonstrate the small differences in temperature and strain. That is why the installation of fiber Bragg gratings along the fiber optic cable can help in temperature monitoring all over the length.

FBGs have been applied in many various areas for strain and temperature measurement. However, according to the researchers, they’ve never been applied for larger cables with high current densities as they have. This cable is able to handle the intense electrical and electromagnetic stresses of severe environmental conditions.

The research team designed new ultra-long fiber Bragg gratings. They behave as a long quasi-continuous FBG, but all the lengths can be meters long instead of millimeters. When the usual FBGs can monitor temperature locally, these new fiber Bragg gratings can simultaneously trace the temperature modifications along the whole cable. This fiber optic technology enables fast detection of temperature changes regardless of the heat source location. It means that the accurate location can’t be defined but the utmost importance in such systems is early detection of the problem.

As a result of the real operating conditions, the fiber optic system was able to detect small temperature changes very quickly. It was even demonstrated to be more effective than the usually applied voltage taps. Moreover, the FBG sensors’ response times could be tuned and their sensitivity became higher as quench regions expanded. All these helped to find quench events faster in comparison with voltage taps even in difficult cases.

The research team offered the fiber optic system providing the technological effectiveness and minimal technological risk of the approach. And scientists are sure that they can make a contribution to other industries where superconducting magnets are really important with the help of fiber optic technology.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Fiber Optic Technology for the earthquake warning

Fiber Optic Technology for earthquake warningA research team from the USA has applied FBG sensors for detecting earthquakes and creating a system for subsurface imaging with the help of fiber optic technology. The sensors were installed above an existing fiber optic cable.

According to scientists, this fiber optic system can register seismic signals produced by trains and automobiles. These signals cause changes in the fiber optics’ length from the very beginning till the very end. This fiber optic system is also known as distributed acoustic sensing or DAS.

Scientists have also installed usual high-resolution seismometers along the fiber optic cable in addition to the new DAS technology. They have aimed to compare these two methods of signal detection. In distributed acoustic sensing the fiber laser light is sent through the fiber optic cable. DAS technology measures the perturbations in the backscattered light along the whole fiber optic cable.

In fact, scientists made a conclusion that the fiber optic system is sensitive enough to detect footsteps. The other research team from one of the US universities proved that fiber optic technology can provide data about street traffic and demonstrated the results of the lockdown 2020. The fiber optic system could locate vibrations from cars and pedestrians above and demonstrated that the pedestrian traffic almost disappeared in April and stayed almost the same in June.

However, according to this scientific research, the fiber optic cable can even detect the jet airplanes that fly by. The scientific work was much easier because DAS systems are easy-to-install devices in comparison with the traditional methods. Scientists just needed to use a single fiber optic cable instead of thousands of geophones to detect ground vibration. Researchers got the same information using fiber optic technology faster. The DAS system continuously monitors the modifications in the fiber optics’ length down to changes in the length of less than 1 nanometer.

Thanks to the DAS technology the research team will calculate the velocity structure in the subsurface by measuring the strain changes. The velocity is a crucial factor in the determination of how the ground and civil infrastructure may respond to an earthquake.

Thanks to the new fiber optic technology, scientists and engineers are going to improve velocity and ground motion models in urban areas by collecting more information. Moreover, they hope to find a better understanding of the seismic risks and assess the resilience of our infrastructure.

Besides, the research team has a plan to spread this fiber optic technology for a vast territory to develop a better early-warning system for earthquakes. This is a totally new way of thinking about monitoring and designing for earthquakes that can give people time to get to shelter.

Optromix is a DAS system manufacturer that provides top-of-the-line distributed acoustic sensing systems suitable for monitoring commerce networks. If you have any questions or would like to buy a DAS system, please contact us at info@optromix.com

FBG sensors for healthcare applications

Fiber Bragg Grating Sensors for healthcareA collaboration of scientists from different countries (China, Pakistan, and Hong Kong) have developed new 3D printed FBG sensors that can help in creating the ‘smart beds’. Scientists have worked to determine the main advantages of the innovative 3D printed FBG sensors and their applications in different spheres.

3D printing has demonstrated enormous results in different scientific fields. It helps to reduce the costs and makes the production process much easier for the developers. The university scientists have already applied it in their different devices with potential healthcare applications.

The main goal of this development based on the fiber Bragg grating sensors was to track sleeping patterns with high precision. First, the research team hopes that this fiber optic solution can be helpful for hospitals to monitor the well being of patients. Moreover, these fiber Bragg grating sensors are temperature-insensitive, lightweight, and high-accurate. That increases their chances to be installed in more hospitals and improves the quality of care because the staff could respond more quickly when the patients’ condition deteriorates.

Usually, FBGs are a microstructure that length is a few millimeters. It is implemented into a short optical fiber that can transform the light in response to temperature, strain, or vibration. FBG sensors are highly applied in mechanical engineering, textile, and medical spheres, thanks to their high thermal sensitivity.

Nowadays, the production of FBG sensors for healthcare still remains a time-consuming and equipment-intensive process that is hard to replicate. While 3D printing is an advanced technology that allows the creation of complex FBG sensing devices. Moreover, fiber Bragg grating sensors have never been applied to sleep-monitoring.

During the first experiments, the 3D printed FBG sensors were tested while putting under pressure loads. Each device demonstrated a number of consistent wavelengths which leads to the possibility of providing reliable readings. The final tests on fiber Bragg grating sensors were held by placing them under the mattress of a bed. A person demonstrated several sleeping positions while the FBG sensors were tracking his changes in posture.

According to the results, the FBG sensors’ readings were almost precise and had an error rate of less than 1%. Nevertheless, the research team considers that this fiber optic technology still has potential in the future. They could, for example, track a patient’s breathing and identify when the heart rate has begun to fall. And that is not the first time that fiber optic technology can prove beneficial to medicine.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com