Skip to content

Fiber Bragg gratings make semiconductor lasers more stable

FBGs for lasersResearchers from the Czech Republic demonstrate a new technique that allows improving wavelength stability and tunability of semiconductor laser diodes in fiber laser interferometers due to fiber Bragg gratings (FBGs) technology. This simulation technique makes the calculation of arbitrary fiber Bragg grating (apodized, chirp, etc.) with a high level of accuracy by a combination of techniques based on layered dielectric media (LDM) and transfer matrix technology.

Thus, based on the simulations and measurements made by the commercially available FBG technology, it has succeeded in the development of a special 100 mm long fiber Bragg grating with apodization. Herewith, the researchers confirm that the new FBG technology of improved linewidth and mode-hop free tuning range of semiconductor laser systems at the wavelength 760 nm enables to increase the resolution of a laser interferometer. Therefore, the absolute fiber laser interferometer with Vertical Cavity Surface Emitting Laser (VCSEL) to easily apply the FBG system to make the wavelength parameter more stable and monitor the tuning range was produced.

Typically, two types of fiber Bragg gratings are distinguished in the used technology: FBG with a period of ~0.5 µm, and Long-Period Fiber Bragg Gratings (LPFGs) with a period from 100 to 500 µm. Additionally, it should be mentioned that their production requires different methods. Thus, the creation of fiber Bragg gratings is performing by interference patterns, while long-period FBGs are produced by side irradiation of the fiber optic components through an amplitude mask or using the fiber translating technique.

Therefore, the application of FBGs offers high thermal stability, retaining optical properties up to 500 °C. Moreover, the production technique has a dependence on such parameters as the length, the type, and the other factors of the FBG technologyIt is possible to determine the necessary parameters on the basis of the FBG spectral profile.

Finally, the simulation technique based on the application of fiber Bragg gratings was developed and tested several types of FBGs. For example, chirped and apodized fiber Bragg gratings (FBGs with modulation of the amplitude and with modulation of the spacing). Herewith, this new FBG system provides numerous benefits in comparison to other types of FBGs.

The main benefit is suppressing the side lobes in the fiber Bragg grating spectral properties. The developed FBG system is a compact reliable one that ensures the operation in an industrial environment where the majority of optical components would be fiber-optic.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com