Skip to content

Fiber Optic Sensors for Vibration Monitoring

Vibration is a common phenomenon in nature and vibration monitoring technology is of significant importance in scientific measurements and engineering applications. Accurate measurement and monitoring of vibration are crucial for the detection of the abnormal events and pre-warning of infrastructure damage. Traditional vibration sensors suffer from electromagnetic (EM) interference, which presents the difficulty for applications in harsh environments. In addition, the short monitoring distance and high maintenance cost mean they do not meet the actual needs of modern engineering measurements.

Optical fibers have attracted a significant amount of research attention in a wide range of applications during the last several decades due to the outstanding advantages of lightweight, flexible length, high accuracy, signal transmission security, easy installation, corrosion resistance, and immunity to EM interference. These characteristics render them attractive for use in harsh environments where the application of traditional sensors is severely limited. The high sensitivity to changes in external physical quantities, such as temperature, strain, and vibration, makes optical fibers suitable for sensing purposes. Up to now, fiber-optic vibration sensors mainly consist of the point, quasi-distributed, and distributed sensors. Several schemes of point sensors including fiber Bragg grating (FBG), Fabry–Perot, self-mixing, and Doppler vibrometry are deployed for vibration measurement. Among them, FBG vibration sensors have become a fast-developing scientific research field owing to intrinsic advantages such as low noise, good embeddability, and the ability to be easily multiplexed to construct a distributed sensor array. Based on the FBG sensing principle, many investigations are applied to the measurement of vibration. Distributed fiber optic vibration sensing technology is able to provide fully distributed vibration information along with the entire fiber link, and thus external vibration signals from an arbitrary point can be detected and located. Compared with point and quasi-distributed vibration sensors, which can only be used individually on a small scale and often have poor concealment, distributed fiber-optic vibration sensors inherit the advantages of general fiber sensors and offer clear advantages such as lightweight, large-scale monitoring, good concealment, excellent flexibility, geometric versatility of optical fibers, quick response, system simplicity, immunity to EM interference, high sensitivity, accurate location, etc. Distributed fiber-optic vibration sensors mainly include interferometric sensors and backscattering-based sensors. Various interferometric sensors have attracted a significant amount of research attention and are widely investigated.

Optromix Company presents FBG Accelerometer, which is used for machinery health monitoring to reporting the vibration and its changes in time of shafts at the bearings of rotating equipment such as turbines, pumps, fans, rollers, compressors, or bearing fault which, if not attended to promptly, can lead to costly repairs. Vibration monitoring programs are utilized in industries such as automotive manufacturing, machine tool applications, pharmaceutical production, power generation and power plants, pulp and paper, sugar mills, food and beverage production, water and wastewater, hydropower, petrochemical, and steel manufacturing. If you would like to purchase Optromix FBG Accelerometer, please contact us: info@optromix.com or +1 617 558 98 58