Skip to content

New Types of In-Body Fiber Bragg Grating Sensors for Biomedical Research and Treatments

FBG sensors for biomedical researchThis year, for the first time ever, scientists have fabricated sensing elements known as fiber Bragg gratings (FBGs) inside fiber optic products designed to dissolve completely inside the body. Such bioresorbable fiber Bragg gratings could be used for in-body monitoring of bone fracture healing and for safer exploration of sensitive organs such as the brain. FBGs are optical elements which inscribed in optical fibers. Fiber Bragg gratings are commonly used for applications such as structural health monitoring of bridges or tracking the integrity of airplane wings. FBGs didn’t exhibit characteristics preferred for use in the body until now. According to the researchers, such new fibers should be safe for patient’s health even if they accidentally break, because these fibers have a design that allows them to break down similarly to dissolvable stitches. These fiber Bragg grating sensors don’t need to be removed after use and would enable new ways to perform efficient treatments and diagnoses in the body. New fibers have a diameter twice as that of human hair. They have the ability to dissolve into solutions with temperature and pH resembling those of the human body, within typical times that span between several hours and a few days.

The new bioresorbable optical fiber Bragg gratings could be used to sense pressure at joints or act as tiny probes that can safely reach and assess the heart and other delicate organs. In addition to this, these fiber Bragg grating sensors could simultaneously deliver the laser beam and provide the accurate real-time temperature sensing necessary to monitor the laser ablation process. In other words, this new ability can be used for improving the laser-based techniques for removing tumors. On the basis of the new aforementioned applications of fiber Bragg gratings, a variety of types of interconnected structures in or on bioresorbable optical fibers can be created over the next years. It will allow a wide range of sensing and biochemical analysis techniques to be performed inside the body.

The researchers developed a special type of glass made of phosphorous oxide combined with oxides of calcium, magnesium, sodium, and silicon to create optical fiber Bragg grating sensors that could be safely used in the body. Such glass combines excellent optical properties with biocompatibility and water solubility. The properties of the optical fibers can be tuned by properly changing the glass composition.

A type of grating known as tilted optical fiber Bragg grating allows some of the reflected light to escape from the fiber core and enter into the surrounding cladding. Tilted gratings are often used for sensing because changes on the fiber cylindrical surface modify the back-reflected light in a way that can be monitored. Scientists and engineers created both tilted and standard optical fiber Bragg gratings to understand how the parameters used for inscription affected the grating sensing characteristics. Nowadays the researchers are performing systematic experiments to better understand how the fiber composition and ultraviolet laser irradiation conditions affect the speed at which the fiber Bragg grating dissolves. The dissolving and sensing properties of the fiber Bragg gratings will need to be studied in animals before being used in people.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Optromix, Inc. is a top choice among the manufacturers of fiber optic devices.

If you have any questions, please contact us at info@optromix.com

Recommended Articles