FBG multicore fibers are used as medical tools

FBG sensors in medicineIt is highly essential to have accurate spatial information of a medical device inside the patient for proper manipulation of the instrument. The thing is that a wide range of clinical applications requires spatial information. Nevertheless, each technique has its disadvantages, the promising solution is the application of fiber optic sensors in the catheter for its spatial information.

Fiber sensors are applied in various medical devices such as endoscopes and catheters. Such features as compact size, flexibility, lightweight, immunity to electromagnetic interference, and compatibility with medical imaging modalities make fiber optic sensors ideal for the medical environment. Therefore, FBG sensors are used in different studies to offer feedback from medical tools, they allow monitoring of muscle fatigue, cardiac activities, and body temperature.

Moreover, the application of fiber optic sensors also includes cardiovascular diagnosis, artery pressure detection, artery detection, intra-aortic balloon pumping, prostatic implants, and urology. For instance, FBG sensors are employed as force sensors to determine the interface between various tissues in order to help in precisely installing a catheter in the epidural space. 

Additionally, sensors based on FBG multicore fibers are used in numerous different shape sensing applications. “They have been used for 3D shape recognition of solid objects, shape recognition of flexible morphine wing, and curvature detection of a continuum manipulator.” Nowadays the studies describe the application of FBG sensors in single-core optical fiber but there are also FBG multicore fibers.

To be more precise, FBG multicore fibers can work as a curvature sensor and 3D shape sensors. Although their cost is higher than in single-core optical fibers, the cross-sectional area of the shape sensor with FBG multicore fibers is smaller than the shape sensor with single-core fibers. Herewith, certain devices require the use of FBG multicore fibers because of the limited space. Also, the cores of multicore optical fibers are mechanically coupled, and the relative distance between the cores remains constant, while they experience identical temperature. Such features of FBG multicore fibers make them more beneficial than single-core optical fibers.

Finally, fiber Bragg grating sensors (FBG) written on multicore optical fibers are applied as shape sensors for flexible devices. Several FBG multicore fibers have been uniquely tested as a shape sensor for a catheter. More particularly, 4 multicore optical fibers are applied despite a single multicore fiber with 3 or more cores that have FBG sensors is enough for reconstructing the shape of a flexible device. Several multicore optical fibers expand the reliability of the sensing system against individual FBG sensor failure.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

New concept of distributed fiber optic sensors

distributed FBG sensorsFiber optic technology promotes a new era of the Internet because optical fibers transmit huge amounts of data information all around the world. Herewith, fibers are regarded as an excellent platform for fiber optic sensors. It is possible to spread fiber sensors over hundreds of kilometers, simply install within structures, and even in a severe environment where the application of electricity is forbidden. Nevertheless,  optical fiber sensors have some inevitable problems as well.

The operating principle of an optical measurement is based on the light that touches the medium under test but conventional optical fibers are developed to perform the exact opposite. To be more precise, the design of optical fibers includes a glass cladding, with a much thinner, inner core. Herewith, the light is sent at the inner core, and every effort is made to keep light from leaking outside. “A substance under test, in most cases, lies outside the much larger cladding. Unfortunately, guided light does not touch upon much of the outside world.”

The only solution to the problem is coupling to the cladding modes that need for the inscription of permanent, periodic perturbations in the optical fiber medium (fiber Bragg gratings). FBGs are written at specific, discrete locations. Fiber optic sensor has limits to point-measurements only because their erasement or movement are prohibited. Optical fiber sensors are perfect in spatially-distributed analysis, in which every fiber optic segment operates as an independent measurement node. Additionally, it is possible to use two strong optical waves into the optical fiber instead as an alternative to the fiber Bragg gratings.

Also, there are Brillouin dynamic gratings, which can be switched on and off at will compared to standard FBGs. It is possible to short segments of arbitrary locations, and scan along with the optical fiber. The thing is that the developed distributed fiber optic sensor is considered to be a first of its kind. Researchers have overcome some challenges: they succeeded to demonstrate the accurate measurement of refractive index outside the cladding boundary of traditional, unmodified optical fiber resulting in an 8cm spatial resolution. Herewith, the analysis demonstrates proper identification of short fiber optic sections immersed in water and ethanol, and clearly distinguished between the two. 

The researchers claim that it is a new concept of distributed fiber optic sensors. Such fiber sensors allow overcoming a decades-long challenge: fiber optic sensors perform the distributed mapping of refractive index outside the cladding of conventional optical fiber, where light does not achieve. The applications of distributed fiber optic sensors include leak detection in critical infrastructure, and process monitoring in the petrochemical industry, desalination plants, food and beverage production, and more.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

FBG sensors prevent tunnel fire

FBG sensors for fire detectionTunnel fires are not regarded as usual, however, they also can perform great damage to lives and properties if they take place. The process of fire detection inside the lengthy and curved tunnel is challenging. Nevertheless, fiber optic sensors based on fiber Bragg grating or FBG technology allows detecting tunnel fires and FBG sensors are considered to be a novel methodology that determines not only the presence but also locates the fire inside the tunnel.

To be more precise, FBG sensors are installed across the inner sides of the tunnel where they control it by the optical spectrum analyzer or wavelength division multiplexing sensor interrogator at the exit. “The change in the center wavelength from the original spectrum at the output denotes the temperature change (fire occurrence) inside the tunnel.” FBG fiber optic sensors offer output with more precision, herewith, fiber Bragg gratings can hold very high-temperature values.

It should be noted that it is possible to detect fires applying various ways, for instance, installing temperature sensors inside the tunnel or controlling the tunnel through the camera. Temperature sensors enable to sense of tunnel fires but their location presents difficulties. Moreover, such a temperature sensor as a thermistor can not stand very high temperatures (1000˚C) as well as there is a problem of self-healing.

FBG sensors, in their turn, provide a highly efficient process of sensing and locating. The thing is that fiber Bragg gratings in fiber optic sensors lead to a narrow range of wavelengths to shift and the rest of it to transmit through it. The center of the reflected wavelength is Bragg’s Wavelength. The features of FBG sensors allow measuring temperature or strain changes in the structures. Additionally, FBG fiber optic sensors have a greater temperature steadiness ability, more immune to electromagnetic interferences, longer lifetime, explosion safe and it is possible to be multiplexed.

Fiber Bragg grating is a short part of optical fibers that reflects a specific light wavelength and transmits all other wavelengths. FBGs operate as an optical notch filter. The operating principle is based on the Bragg grating patterns inside the fiber that perform the reflection. The design of fiber Bragg gratings includes holographic interference or a phase mask to undergo a short length of optical fiber to a periodic distribution of light intensity. 

The developed FBG sensors have been already tested and demonstrated the following results: the sensitivity value of the fiber optic sensor achieves 20 pm/˚C. Also, it is possible to increase the accuracy of fire location inside the tunnel by increasing the number of FBG fiber optic sensors for the considered tunnel length of 4 km. Thus, FBG technology can help to perform operations very fast and can save many lives and properties.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Extremely precise FBG sensors promote smaller chips

FBG sensors for chip developmentAn electrical engineer from the Netherlands has developed a fiber optic sensor based on fiber Bragg grating technology (FBG)with a super-precision of less than the size of an atom. Such FBG sensors favor the production of smaller chips, which in turn are required to develop faster computers.

The developed fiber sensor allows measuring deformations less than the width of an atom is possible to be measured. Thus, these fiber optic sensors offer a highly promising application that enables to improve the accuracy of current machines. It should be noted that even the slightest deformation of the wafers in machines may result in serious problems.

“These wafers are actually quite stiff, but because they are moved about at such great speed, they are subject to g-forces that slightly deform them. Measuring this deformation by FBG sensors gives the opportunity to compensate for it in some or other way, and opens up the possibility of producing even smaller chips.”

This is the main reason why the engineer began developing a fiber sensor based on FBG technology, enabling sensing these deformations of roughly one nanometer per meter. The operating principle of this extremely precise FBG sensor is that it is possible to measure the deviations in the frequency of laser beam light with high precision, as well as the principle used by fiber Bragg grating – an optical fiber of sorts treated in such a way that it becomes opaque for a very specific color of light.

Herewith, such a resonance frequency is dependant on the extent to which the optical fiber is stretched. Therefore, fiber Bragg gratings can be employed here to the moving parts as a way to measure the wafer’s deformation. The fiber optic sensing system based on FBG technology has been already tested in the lab. Although modern machines require dozens of such fiber sensors, it is not a challenge because FBG sensors are not expensive and light-weight.

The engineer claims that it succeeded in achieving the accuracy of 5 nanometers per meter, thus, the fiber optic sensor of a few centimeters in length allows measuring the deformation of a couple of dozen picometers, herein, that is less than the diameter of an atom. Nevertheless, several challenges have to be overcome before this incredible level of precision could be reached due to fiber Bragg gratings.

The first challenge is a need for sophisticated stabilization techniques to provide that the laser beam light has the right frequency. However, the main problem is considered to be the resonance frequency of the FBG sensor that depends on not only the deformation but also the temperature. 

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Fiber optic seismic sensors from submarine cables

FBG sensors in seismologyA team of researchers from France proposes for the first time the opportunity to detect the propagation of seismic waves on the seafloor by fiber optic seismic sensors made from submarine telecommunications cables. The researchers confirm that the potential application of such seismic sensors includes the use of existing infrastructure for the detection of earthquakes, as well as swell and underwater noise.

It should be noted that about 1.2 million kilometers of telecommunications cables cut across the ocean floor that is equal to three times the distance from the Earth to the Moon. The cables consist of optical fibers leading to simple communication by phones, SMS, or e-mail. Herewith, the optical fibers could soon find a new application, that of detecting acoustic and seismic waves.

To be more precise, the researchers apply a 41 km-long fiber cable installed at the coast of Toulon in southern France for their tests to obtain data from the fiber optic sensors of the underwater observatory that is at a depth of 2500 m. Moreover, a special technique based on small impurities in the optical fibers is used for sending light back to the transmitter.

The thing is that “by stretching or contracting the optical fiber, the passage of a seismic or acoustic wave alters the distance between these impurities, and thus the backscattered signal, by a tiny amount.” Nonetheless, the researchers have to prove the opportunity to detect these differences in submarine fiber optic cables because of the insulating layers that surround the optical fibers.

Thus, the pulses of light put at the optical fiber and allow analyzing the backscattered signal. The researchers use the 41 km of optical fibers for tests and change them into more than 6000 fiber optic seismic sensors. Moreover, such fiber sensors enabled to detect a magnitude 1.9 earthquake that happened during the test at each of the sensing areas with a sensitivity close to that of a coastal seismic station, even despite the fact that it was located over 100 km from the fiber optic cable.

Nevertheless, the benefits of seismic sensors do not complete: the sensing points of fiber cable are highly sensitive to waves that go through the ocean, for instance, those created by the swell. The influence of waves on the seafloor near the coast, as well as the effect on the abyssal plain, where they produce “seismic background noise” was captured.

Finally, the fiber optic seismic sensors make it real to find out for the first time how the tiny vibrations that permanently interact with the Earth’s interior are created, allowing specialists in geophysics to examine its structure. Also, such fiber sensors may overcome a wide range of scientific and societal challenges like earthquakes, coastal erosion, the interaction between life, the oceans and the solid Earth, etc.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Distributed fiber optic sensing applies an entangled quantum network

FBG sensors for quantum networkQuantum-enhanced metrology is regarded as a popular area of research for years because of its promising applications, varying from atomic clocks to biological imaging. According to the researches, a non-standard distributed sensing system offers significant advantages compared to traditional fiber optic systems.

These researches help a team of scientists from Denmark to carry out an experiment on distributed fiber optic sensing and the benefits of employing an entangled quantum network to detect an averaged phase shift among numerous distributed sensing nodes. The fiber optic sensing technology uses several methods that enable collecting more accurate measurements in different areas.

The purpose of the new study is based on squeezed light and homodyne detection that is now established distributed fiber optic sensing techniques. The team aims at “measurement of a global property of numerous spatially separated objects and investigate whether probing these objects simultaneously with entangled light led to more accurate results than probing them individually”. 

Thus, the application of a quantum network to probe the objects simultaneously allows distributed sensing systems with far higher accuracy than that attainable when examining probes individually. To be more precise, the team measures the phase shifts (set with wave plates to a known value) by the fiber optic system that sends a weak laser beam through and detects the change in the light’s phase quadrature with homodyne detectors.

The benefit of applying distributed fiber optic sensing plays a really important role when it is necessary to measure the property of numerous objects connected in an optical network. Nevertheless, the losses in the network and detectors are required to be kept low in order to successfully raise the accuracy, alternatively, the quantum benefit of distributed sensing disappears.

The researchers succeeded in the experimental demonstration of the benefits connected with employing multi-mode entanglement for distributed fiber optic sensing. The thing is that the benefits have been previously predicted, however, only highly idealized scenarios and experimentally very difficult probe states or detection methods were taken into consideration. The developed fiber optic system demonstrates that these benefits are available even with current noisy sensing technology.

The fiber optic system finds potential applications in various areas of research and technology development. For instance, they provide a high sensitivity of molecular tracking devices, atomic clocks, and optical magnetometry methods. Moreover, the distributed fiber optic sensing gives valuable information about how quantum-enhanced metrology can be reached utilizing readily accessible technologies, for example, squeezed light generation and homodyne detection.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Distributed sensors for structural health monitoring of bridges and dams

FBG sensors for bridge monitoringNowadays distributed fiber optic sensors remain a subject of great interest for constant structural health monitoring of huge structures, for instance, bridges or dams. Herewith, the more sensing points there are, the more effective monitoring the sensing system offers. Thus, newly improved distributed sensors with 1 million sensing points provide prominently faster detection of structural problems that are now accessible.

Fiber optic sensors allow accurately detecting of erosion or cracking before a dam fails. Therefore, earlier detection of a problem by fiber optic sensing systems may lead to its possible prevention from later deformation or provision of sufficient time for evacuation procedures. Fiber sensors are considered to be perfect for controlling infrastructure since they suit for use in harsh environmental conditions and in areas that lack nearby power supply.

The operating principle of distributed sensors is based on “changes in the structure at any of the sensing points along with the optical fiber that causes detectable changes in the light traveling down the fiber”. Despite the high popularity of distributed fiber optic sensors, the main applications of sensors include the detection of leaks in oil pipes and structural health monitoring for landslides along railroads.

It should be noted that the novel fiber optic sensing system enables tracing train and temperature changes from 1 million sensing points over a 10-kilometer optical fiber in less than 20 minutes, while the strain parameter demonstrates deformation or mechanical stress on an object of interest. Herewith, the new distributed sensor is regarded as to be about 4.5 times faster than previous fiber sensors with 1 million sensing points. A larger number of sensing points require fewer optical fiber units for structural health monitoring of an entire structure resulting in cost reduction.

A large density of sensing points makes distributed fiber optic sensors suitable for such applications as avionics and aerospace, where every inch of a plane wing has to be controlled properly. According to researchers, the conventional technique of generating the continuous signal in fiber sensors undertakes distortions in the fiber optic system at higher laser powers. This problem has been solved by using the approach known as Brillouin optical time-domain analysis.

The fiber optic sensor has been already tested and showed the opportunity to measure the temperature of a hot spot to within 3 degrees Celsius from the end of a 10-kilometer long optical fiber. Additionally, it is planned to improve the distributed sensor and make it even faster resulting in the further reduction of the acquisition time. Future enlargement of sensing point density will promote the fiber sensors being used in new fields, for example, biomedical applications.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

FBG sensors measure pH to study tissue growth

FBG sensors for pH measurementA team of researchers from the U.S. continues developing a fiber optic sensor based on fiber Bragg grating or FBG technology that helps to study tissue growth in the lab. The operating principle of the FBG sensor is based on a light-based signal to measure pH that is considered to be a highly important quality in cell-growth studies.

It should be noted that compared to traditional sensing systems, it is possible to use the fiber sensor to control the environment in cell culture for weeks at a time without the necessity to bother the cell-growth environment. For several years, the researchers have designed photonic sensors that apply optical fibers etched with a fiber Bragg grating (FBG). Temperature or pressure changes lead to transform the wavelengths that are able to get through the fiber Bragg grating.

Such a sensing system has been already tested and shows that fiber sensors with Bragg gratings can be easily adapted to pH measurement. The application of a fiber optic-based platform featuring FBGs promotes the development of a fiber optic sensor that “measures the heat released by pH-sensitive chromophores upon absorption of light”.

Thus, due to this fiber sensing system, the researchers have succeeded to compare visible light absorption by the chromophores to the heat released and changes in the fiber Bragg grating signal over a pH range of 2.5 to 10. To be more precise, firstly, the team fills a petri dish with a solution made with red cabbage juice powder that transforms color in response to changes in pH.  Then the researchers put one optical fiber above the dish, connecting the optical fiber to a laser pointer, and shine the laser beam into the sample. 

Additionally, they install a second optical fiber with FBGs as the temperature sensor in the cabbage juice solution. Herewith, the team controls manually the pH levels in the solution. Shining the solution above, it absorbs the laser beam to different degrees depending on its pH level. The fiber optic sensor operates as a thermometer and detects these tiny changes in the juice’s heat.

A second color into the solution added by the researchers demonstrates that the fiber sensor offers its operation over a wide range. Moreover, further researchers show that the pH measurements by the FBG sensor are precise to plus or minus 0.13 pH units and are stable for at least three weeks.

Finally, it is planned to perform tests on “how cell cultures are affected by the slight, temporary temperature changes (about 1 to 2 kelvins) in localized areas of the sample that occur as a result of this measurement technique” by applying the developed fiber sensing system. Also, the temperature changes are required to reduce in the future as much as possible because over time the fiber sensors could be developed to control the growth of tissue in the human body

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Fiber optic sensors make cities “smarter”

FBG sensors for smart citiesCompanies from the U.S. and Japan have developed for the first time a new fiber optic sensing technology that allows delivering traffic-related data to smart cities without tearing up streets. To be more precise, in smart cities connected intersections and traffic fiber optic sensors play a crucial role in the whole infrastructure. 

Thus, the combination of intersections with fiber sensors may greatly affect improving traffic flows resulting in congestion and pollution reduction, finally, improving life quality, resident safety, and raising economic activity and productivity. Additionally, these fiber optic sensors may promote pedestrian safety and save lives in different cities.

It should be noted that data information on traffic patterns and road congestions required to make the best application of such fiber sensing systems. Fiber optic technology makes it possible to get the data without physical inspections, putting in new infrastructure, or tearing up streets.

The concept has been already tested and demonstrated the opportunity to apply network infrastructure with existing fiber optic cables already installed in the ground as distributed optical sensors to compile data on city traffic patterns, road conditions, road capacity, and vehicle classification information.

Nowadays it is planned to enlarge tests of the fiber optic sensing technology and to decide how it can be employed in smart cities. The main purpose of technology is regarded as to enable “existing optical fiber providers to deliver smart city traffic-related data without tearing up roads or sidewalks”

The manufacturers apply new fiber optic technology and combine fiber sensors with artificial intelligence-based software to provide “intelligent traffic monitoring including the sensing of vehicle density, direction, speed, acceleration, deceleration and more”. The thing is that until recently it was required to install purpose-built optical fiber in very shallow spaces in the ground with fiber Bragg grating at predetermined intervals to collect and analyze this type of data information.

Today the proposed fiber optic solution suggests utilizing optical fibers already in the ground. The representatives of the companies confirm that these fiber optic sensors may lead or improve various public functions, for example, they allow first responders to identify and respond to gunshots as well as increasing municipalities’ capability to more quickly and efficiently detect earlier deterioration of bridges, tunnels, and other infrastructure.

Application of a single FBG interrogator in the distributed multi-parameter fiber optic sensor system estimated different characteristics of back-scattering light, which can be utilized to determine the static strain, dynamic strain, acoustics, vibrations, and temperatures for each optical fiber segment.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Embedded fbg strain sensors for robotic applications

FBG strain sensors for robotsFiber optic technology continues to find new applications in various fields including medicine, biomechanics, space, oil industry, geophysics, etc. According to researchers from the U.S., fiber optic sensors are regarded as uniquely suited for utilizing in robotic hands. To be more precise, the researchers have developed a three-fingered soft robotic hand with multiple embedded fbg strain sensors resulting in emerging of a new type of stretchable fiber sensor.

The application of fiber optics allows installing 14 fbg strain sensors into each of the fingers in the robotic hand, therefore, it can “determine where its fingertips are in contact and to detect forces of less than a tenth of a newton”. Moreover, the researchers confirm that the new stretchable optical sensing material could find highly promising application in a soft robotic skin to offer even more feedback in the future.

Modern robotic hands include more strain sensors than is typical today, thus, they can operate autonomously and react safely to unexpected forces in everyday environments. It should be noted that human skin consists of thousands of tactile sensory units only at the fingertip, while a spider has about hundreds of mechanoreceptors on each leg, however, nowadays conventional humanoid includes only 42 fiber sensors in its hand and wrist.

Herewith, it is difficult to add traditional force or pressure sensors because of complex wiring, it is prone to breaking and susceptible to interference from different electromagnetic tools. Nevertheless, it is possible to embed several fbg strain sensors in a single optical fiber. The operating principle of such a robotic hand is based on several fiber sensors in each of the fingers that are connected with 4 optical fibers, through a single fiber can be used for this purpose.

Additionally, the embedded fbg strain sensors offer such an advantage as the immunity to electromagnetic interference. Other benefits of FBG sensors include:

  • Fiber sensors are passive and can be used in explosive environments.
  • Non-conductivity of fibers.
  • Opportunity to install more than 80 fiber sensors per optical fiber
  • The fast response of FBG sensing systems.
  • Fbg strain sensors do not corrode and have a small diameter.

Robots used in the industry provide extremely accurate manipulation with only limited fiber sensors, herein, they operate in controlled environmental conditions where people do not risk to do it. Nevertheless, the development of soft robots, which will interact routinely and safely with people, require careful attention to tactile and force sensing. That is why fbg strain sensors are considered to be a perfect fiber optic solution.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fbg strain sensors. If you have any questions, please contact us at info@optromix.com