Structural Health Monitoring Systems Applications

Structural health monitoring systems have found a number of applications in various fields. A complex approach including several techniques is the best solution for detecting damage and structural changes.

Here are some examples of its implementation in structures where fiber optic technology is more commonly used.Structural Health Monitoring Systems Applications

Structural Health Monitoring Common Information

The most effective methods of maintenance programs include early detection of material degradation and failure. Mostly, fiber optic systems have two purposes of applications:

  • Structural efficiency control during the construction;
  • Continuous monitoring of structural efficiency under service loads.

Structural health monitoring systems consist of three subsystems:

  • A network of fiber Bragg grating sensors;
  • An FBG interrogator that records the optical reflection from each fiber optic sensor. They are placed in the necessary locations, depending on the applications and type of the structure.
  • A processing unit that collects all the data from the FBG interrogator, processes it and transmits it to the user.

Distributed Sensing Systems

Distributed temperature systems are often the choice for harsh environments where traditional sensors may not be suitable. When we talk about dams, tunnels and similar structures, there are conditions that greatly affect the operation of the structures and sensors. Ground movement, earth pressure, water and groundwater have an impact on the reliability and efficiency of any monitoring system.

Specialists can monitor all deformations and temperature changes through distributed sensing. Distributed fiber optic sensors are capable of measuring various parameters from thousands of points and transmitting them to a center that provides complex data on any changes.

Distributed temperature systems are often the choice for harsh environments where traditional sensors may not be suitable. In the case of dams, tunnels and similar structures, there are conditions that have a major impact on the operation of the facility and its sensors. Ground movement, earth pressure, water and groundwater will affect the reliability and efficiency of any monitoring system.

Structural Health Monitoring of Dams

Dam safety can have a significant impact on the surrounding environment and people. That’s why structural health monitoring of the dams is an essential part of the dam safety regime. Timely detection of defects and minimizing the effects of possible damage are the main purposes of such systems. However, specialists may face some difficulties due to the height and complex structures of the dams. Comprehensive structural health monitoring can’t be fully achieved with just a few monitoring points; it requires a complete, properly designed fiber optic system. Another problem is that some areas of the dams are inaccessible or difficult to access.

There are a number of factors that can affect dam construction. These include temperature, hydrostatic pressure, chemical reactions, etc. There are also environmental factors such as air temperature, reservoir levels, and earthquakes.

All of these circumstances can be the cause of typical dam problems such as cracking, displacement, etc. The other problem is the appearance of internal erosion, which can cause the failure of the whole mechanism in the future. This problem is hard to detect. That’s why it is important to have an effective fiber optic system in place for structural health monitoring and therefore safe operation.

Accidents in dams usually occur during the first filling or in the first few years of operation. However, there are also accidents that occur later.

Structural Health Monitoring (SHM) of Tunnels

SHM is able to provide a quick assessment of the state of health of the tunnel. It is typically used for safety improvement and optimization of maintenance and operations activities. The fiber optic monitoring system provides data on any changes in indicators that could be the cause of tunnel collapse. This makes it possible to monitor the stability of the structure and take action when it’s needed.

The construction of tunnels is based on soil conditions, the functions of the tunnels themselves, and logistical issues. Underground construction is irreplaceable, especially in cities where land resources are scarce. They are not as susceptible to the effects of natural disasters as are structures on the surface of the earth.

In the hard-to-reach or problematic areas of the tunnels, distributed monitoring systems are usually recommended. This makes it easy for staff to monitor the condition of their structures and perform necessary maintenance in a timely manner. This is especially important when it comes to fires – the biggest danger in tunnels. There are special fiber optic systems for temperature control and early warning of ignition, including fiber optic heat detectors.

Today, there are automated fiber optic solutions that provide accurate monitoring from a remote location. These fiber optic devices are often designed specifically for use in critical locations. In addition, they consider the cases that may occur, such as the use of the additional FBG sensors. If the other sensor fails, they will be able to operate.

Distributed temperature sensing is a newly introduced technique capable of complex structural health monitoring systems. Temperature and pressure control is especially important for dams and tunnels with their difficult-to-access locations and other challenges that staff usually face. SHM is the solution for these situations.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Structural Health Monitoring for Different Structures

This fiber optic technology has become a modern and advanced approach that attends several functions: diagnostic and simultaneous monitoring.SHM for Different Structures

Structural Health Monitoring Operation Principle

The continuous structural health monitoring gives an opportunity to accumulate data about an object’s state. Thanks to the information obtained, specialists can use it to predict possible damage in the future and extend the service life. And fiber optic solutions provide a whole system that consists of fiber optic sensors, data collecting and transmitting units, etc.

Implementation of the fiber optic system involves review of the design processes of structural elements, a change of the processes, etc. For normal operation, parameters should stay at the allowable ranges that were previously determined and recorded in the program by specialists.

In fact, the factors that can influence the structural condition can be divided into two categories:

  • Negative external factors that have a constant impact on the material. This includes high or low temperatures, humidity, etc.;
  • Force-majeure circumstances, such as floods, volcanic eruptions, earthquakes, etc.

FBG Sensors for SHM Systems

Fiber optic sensors are proven to bring benefits to specialists as a part of the structural health monitoring system, including for civil construction. Compared to the electrical sensors, fiber optic sensors offer several advantages, including resistance to electromagnetic interference that is crucial in many applications.

Fiber optic technology can transmit data over several kilometers. Their other features such as long-term stability and reliability help them to function in severe environments. FBG sensors have been examined, for example, for implications in ice and snow. Fiber optic sensors are susceptible to the mechanical and chemical impacts of the concrete constructions. Despite that, they are mainly used in concrete environments for constructions such as bridges and dams. However, FBG sensors are able to effectively operate in such conditions for a considerable time.

Still scientists are going to design and experiment with fiber Bragg grating sensors further to find their limitations in new applications. Various types of fiber optic sensors were produced to provide measurements of diverse physical and chemical characteristics. Fiber Bragg grating temperature sensors are used for structural health monitoring of civil engineering structures, as it was mentioned above. In certain concrete based building structures there is a need for FBG strain sensors or FBG moisture sensors. From the other side, concrete structures are affected by formation of cracks and moisture ingress resulting in operation failure.

Fiber Optic Sensors for Sewage Tunnels

One of the fields where fiber optic sensors are used is a structural health monitoring system for sewage tunnels. The main reason for the sewage systems’ damages is excessive loading. It may be caused by constant physical effects like corrosion, penetration of plant roots, etc. The damage can be also caused by natural disasters such as landslides and floods. The consequences of all these impacts can greatly reduce the constructions’ operation life and lead to failures in operating.

That’s the reason why fiber Bragg grating sensors are essential in structural health monitoring systems. FBG sensors are able to constantly monitor and predict these events in advance. Thus, specialists have an opportunity to prevent great damage or at least minimize the economic losses.

Thanks to the fiber optic sensors that structural health monitoring includes, this technology is proved to be cost-effective in different applications. The modern approach provides quick and simple-in-use monitoring of various kinds of structures.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com