Benefits and Risks of Real Time Thermal Rating Systems

FBG sensors in real time thermal ratingA real-time thermal rating system has been developed initially for overhead transmission lines using actual meteorological data and real-time conductor temperatures and line loadings. Such a real-time thermal rating system provides much higher ampacity ratings than other conventional methods. A natural convective heat equation is developed for stranded conductors. The temperature of the conductor is solved directly without resorting to an iterative solution.

The temperature of an asset itself, such as a power cable, is a key for a real-time thermal rating system. This can be measured continuously if equipment utilizes a distributed temperature sensing (DTS) system. Distributed temperature sensing optical fibers are installed along with the fiber cable. The fiber cable can also be utilized for telecoms purposes as DTS systems typically utilize standard telecoms fiber optics.

Thermal headroom typically is determined using static ratings which are based upon probabilistic methods and are representative of worst-case scenarios. The “static” design calculation methods provide simple and conservative estimates of network capacity. In reality, networks can be complex and operational ratings can be influenced by multiple factors including weather conditions and loading. Soil condition, buried depth, burial configuration, cable size, and type must be considered for underground equipment.

The real-time thermal rating system works with such assets as:

 

  • Underground and subsea cables

 

Experience has shown that cable depth, soil type, and the shape of the load curve have a material impact on ratings. The real-time thermal rating system can determine actual thermal headroom indicating whether some unused network capacity can be released or locations where networks are constrained.

 

  • Overhead lines

 

  • Sag-based
  • Tension-based
  • Temperature-based
  • Current rating-based

 

  • Transformers

 

The real-time thermal rating systems for transformers utilize measurements including transformer load, ambient, and transformer temperatures based on the equations set out in IEC 6007. With the exception of emergency ratings, P15 recommends using an average ambient temperature and a weighted average that products the same aging if the temperature varies over a load cycle.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators and multiplexers, distributed temperature sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world. Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems.

If you are interested in Optromix distributed temperature sensing systems, please contact us at info@optromix.com

Fiber Bragg grating sensors: present and future applications in smart cities

FBG sensors in smart citiesThe so-called “smart cities” are increasingly becoming the subject of media discussion: nowadays the phenomenon of “smart cities” is the focus of attention of technology companies and entrepreneurs, local governments, and civil society. The primary task in creating and equipping “smart cities” is to improve the quality of life for citizens: such cities promise to be more modern and hi-tech.

Structural integration of fiber Bragg grating sensors and fiber optic sensor systems represents a new branch of engineering and is a major breakthrough in creating smart city infrastructures. Nowadays fiber Bragg grating sensors are a fundamental and indispensable component of any intelligent control fiber optic system. A well-functioning control system is generally equipped with an FBG array of sensors that allows this system to collect and process the required data about its environment. After data collection, the fiber optic system is able to fully characterize its environment and adjust its operations accordingly. The comprehensive capabilities of the fiber Bragg grating products present many opportunities that were unavailable in the past due to high costs and limited accessibility. It is necessary to emphasize that fiber optic systems and associated equipment provide the essential processing power for small-scale devices through which the coordination of the FBG sensors will be easy to implement at a relatively low cost.

Fiber Deployments and the Internet of Things

In itself, the fiber Bragg grating sensor is a converter that converts parameters of a physical nature to an electronic signal, which can be fed into an autonomous system or can be interpreted by humans. These FBG sensors can transmit information about light, pressure, temperature, humidity, moisture, and a variety of other parameters. More sophisticated fiber Bragg grating sensors include accelerometers for measuring acceleration and vibration. An even later generation of FBG sensors is based on semiconductor physics, nanotechnology, and intelligent sensing devices which include smartphones amongst others. Nanotechnology is a key enabling technology for fiber Bragg grating sensor development because advances in nanotechnology will undoubtedly drive development in MEMS (MicroElectroMechanical Systems) and photonics, inevitably leading to the development of highly sophisticated but low-cost sensors. Nowadays smartphones are fitted with a variety of sensors such as GPS, gyroscopes, accelerometers, and compasses, enabling a variety of crowdsourcing applications, which will eventually be augmented by the Internet of Things. In the context of the Internet of Things, the communication between sensors nodes has to be wireless because the costs of cabling millions of sensors are impractical and extremely expensive.

Fiber Bragg grating sensor systems can be compared to and are capable of being the nervous system of infrastructure as they are extremely sensitive to outside and environmental interference. A large variety of FBG sensors allows for extensive measurements of multiple parameters of many different buildings and facilities.

Advantages of Bragg sensors

One of the main advantages of FBG sensors is that they provide reliable data that allow for well-informed decision-making based on reliable evidence. Fiber optic systems allow for the assessment of thousands of sensors in real-time on a single cable. FBG sensor systems are well-suited for the detection and recording of critical structural response characteristics as well as environmental indicators that lead to degradation.

An alternative for Challenging Strain and Temperature Measurements

Optic sensing becomes one of the noticeable aspects, across multiple business sectors such as civil&energy, medical, automotive, aerospace, and manufacturing industries. The worldwide distributed optic temperature sensing market is majorly driven by the growing optics technology-based installation. Based on applications, the market has been segmented into temperature sensing, acoustic/vibration sensing, strain sensing, and others. The distributed temperature sensing segment is anticipated to dominate the distributed fiber optic products application arena (in the term by size) by 2025. There are already examples of the implementation of FBG sensors into smart city infrastructures.

Fiber Bragg gratings are often used in strain sensing especially in such places where the environment is harsh (for instance, high-EMI, high-temperature, or highly-corrosive). Strain measurement is imperative during prototype design and testing. Strain measurements ensure that materials perform as they should and that the equipment is safe and durable. Measuring strain is crucial for testing complex structures, like aircraft, turbines, etc. There various ways in which stress can be measured, but it is widely accepted that FBG sensors are the most efficient way of strain measurement.

The ability to disconnect your monitoring instrumentation and return for results after a large amount of time such as months or even years is a great advantage of fiber Bragg grating sensors. For instance, in the case of bridges, it is common for engineers to visit the bridge and conduct impact testing using an impact hammer on the different parts of the bridge. This is time-consuming and even hazardous because of the height of some bridge structures. The distribution of a number of FBG sensors throughout the bridge and the attachment of the instrumentation to this bridge on a periodic basis is a much more efficient solution. This is only one of the good examples to demonstrate the effectiveness of the fiber Bragg grating strain sensors. Besides bridges, other examples of using FBG for long-term static strain testing are buildings, piers, and structures in high earthquake-prone areas.

The different structures may have very-low-frequency modes, and they may also have higher modes due to the effects of wind and tide. Most earthquakes and other earth tremors are low-frequency events. Fiber Bragg gratings can be attached to the structures and monitored for the vibrations during earth tremors and earthquakes. The low-frequency dynamic strain testing can help in determining the reaction of high-rise buildings to the wind. In addition to this, FBG sensors create connections with peers and other shore structures to determine their vibrations during the ebb and flow of tides. Dynamic strain testing can also be performed on transportation vehicles like automobiles, trains, and airplanes. In addition to civil structures and vehicles, there are a number of other applications for dynamic strain testing and vibration stress testing using fiber Bragg gratings. FBG sensors can be attached to industrial machinery to determine the frequency and amplitude of the stress vibrations.  

More specifically, FBG strain sensors have been used in the following applications: performance monitoring of deep shafts and retaining walls; monitoring of deep diaphragm walls; assessment of tunnel lining behavior during tunnel construction; the FBG strain sensors are embedded in the precast concrete lining segments when being made in the factory; in-the-field testing of large diameter piles by integrating FBG strain sensors; monitoring of old tunnels during construction that happens nearby.

FBG temperature sensors are used for field testing of thermal piles in order to evaluate the thermo-mechanical response of piles during heating and cooling; monitoring the power lines to detect overstressed areas.

Where to buy the best fiber optic products?

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators, and multiplexers, Distributed Temperature Sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world.

Our main goal is to deliver the best quality fiber optic products to our clients. We produce a wide range of fiber optic devices, including our cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems.

We are dedicated to delivering the best products and supports to all our customers, our engineers have extensive experience and strong technical expertise in creating fiber Bragg grating products.

If you are interested in Optromix FBG sensor systems, Optromix distributed acoustic sensing system, or any other fiber optic products, please contact us at info@optromix.com

Performance of fiber Bragg gratings in radiation environments

The developments in photonics led to a communication revolution over the past two decades. The technologies developed for telecommunications are now being used in the development of sensors for a wide variety of applications. The sensors based on photonic technology are especially valuable for applications where the measurements need to be taken in harsh environments like ones encountered in space exploration and nuclear power plants. Fiber Bragg grating sensors are preferred as they are compact in size, have low power consumption, and are tolerant to environmental influences.

The sensing in FBG sensors relies on using the sensitivity of the device to changes in the refractive index of the host material. In FBG sensors the resonant condition is directly proportional to the refractive index of the waveguide. A small change in the environment, for example, a temperature drop or increase, leads to a significant change in resonance wavelength which has been used for photonic thermometry. The sensitivity of FBG sensors to small changes in the refractive index raises the question of the FBG sensor performance under harsh conditions, such as high radiation environments.

The past studies have shown that FBG sensors are fully functional for several years under exposure to radiation doses ranging from a few Gy/h to a few kGy/h. Some studies have indicated a small, but significant drifts in Bragg resonances; this suggests that the resonance wavelength redshifts with increasing dose rate, however, other studies have reported a blue shift of comparable magnitude.

Overall, FBG temperature sensors show significant peak center drift due to accumulated dose, however, the temperature sensitivity shows no changes. The changes in the measurements are assumed to be due to the complex changes in the fiber. An understanding of the changes that occur in the fiber during the exposure to radiation could enable integrated dose measurements of absorbed radiation dose with the use of appropriate correction factors.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Temperature Sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world.

If you are interested in Optromix FBG sensors, please contact us at info@optromix.com

Fundamentals of fiber Bragg grating interrogators

The fiber Bragg grating sensors work by sending the light into the fiber, where it is reflected back from the FBGs. The light that has been reflected travels back to the photodetectors of the instrument, where it is compared to wavelength reference artifacts. During this process the fiber Bragg grating interrogator evaluates the position of the center wavelength of the FBG; this information is later converted to engineering units. The gage factor supplied with the FBG sensor helps to determine and translate the data obtained during the measurements.

The described principle is true when one FBG sensor is present on a fiber. However, if the particular application requires multiple FBG sensors, like FBG sensor pipeline monitoring, fiber optic well monitoring, FBG temperature sensing, etc., the interrogators use one of the discriminating schemes in order to discriminate between one FBG sensor and the next. There are a couple of discrimination methods that are used in FBG interrogators. The first one is referred to as time division multiplexing utilizes the known speed of light in the fiber to discern which signal is reflected from which FBG along the fiber path. Around 100 FBG sensors can be interrogated with this method.

The second method, wavelength division multiplexing, is the most utilized one. As FBG sensors are at distinctly different nominal center wavelengths from their neighbors, the FBG interrogator uses the wavelengths of the sensors to track them along with the fiber. The range of this method is largely due to the developments in fiber optic technology.

Other approaches to FBG sensor interrogating, some of which include:

  1. Broadband source, Dispersive element, Diode Array;

This method is less reliable than the aforementioned ones due to limited resolution, which is a result of the inherent limitations of commercially available diodes.

  1. Broadband source, Optical Spectrum Analyzer/Multi-line wavelength meter;

The optical spectrum analyzers are large and expensive, which makes them less desirable in a laboratory setting. They are also not able to perform optimally under some temperatures.

  1. OTDR/TDM systems;

The system cannot handle a large number of sensors on the fiber as its data acquisition rates scale down with increasing sensor counts.

  1. External Cavity Tunable Laser, Power Meter, Wavelength Meter;

External cavity tunable lasers have low speed and do not have a wide operating temperature range. Moreover, they are expensive and do not have the required mechanical robustness.

Optromix interrogators can control up to 8 optical channels. The interrogator operates with the 20 maximum sensors per channel. The device is controlled by the PC with the specialized software for sensors monitoring. The system contains a broadband source of radiation and it can carry out spectrum analysis.

If you would like to purchase an FBG interrogator, please contact us: info@optromix.com or +1 617 558 9858

Measurement of strain with strain gauges and FBG strain sensors

The relationship between stress put on a material and the resulting deformation is defined by Hooke’s Law that has been around since 1678. Different techniques and technologies have been used to measure the law over different periods of time. In the past mechanical strain gauges have been used to measure strain applied to a material. The first strain gauges were analog. Some of these devices, like springs and levers, are still used today, but they are not accurate enough as the strain applied to the material would have to be quite high for the device to register it. Strain gauges have a number of disadvantages, one of them being the need to be clamped firmly so the device didn’t move which causes an inaccurate reading.

The next step in strain measurement techniques were resistive strain gauges, the most common of which are foil resistive gauges. These devices are better than the previous model as they are sensitive, accurate, easier to produce. However, the lack of foil elasticity poses limitations on the device, for example, resistive strain gauges cannot be used for ductile materials. To overcome this downside conductive material can be added to elastomers for a stretchier gauge.

The best solution that has been developed so far for strain measurements are fiber Bragg grating strain sensors. They are still catching on as their initial price and lack of awareness slowed their adoption among industry professionals. However, the price of FBG strain sensors is dropping every year which is tied with the level of development of fiber optic technology.

The low price of FBG sensors makes them available for different applications, some of which include automotive, medical, aerospace, and energy markets. FBG strain sensors have been found to be useful in aerospace applications where they are used to determine wing loading while providing accurate fuel readings. Civil engineers utilize FBG sensors for structural health monitoring. The operational life of vehicles can be determined with the use of FBG sensors that are widely utilized by automotive designers. FBG strain sensors are lighter, easier to install, and less expensive than strain gauges.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators, and multiplexers, Distributed Temperature Sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world.

If you are interested in Optromix FBG strain sensors, please contact us at info@optromix.com

Fiber Bragg grating sensors for harsh environments

FBG sensors for harsh environmentsThe demand for data is growing exponentially, piling pressure on networks to deliver more data, faster, over longer distances. Fiber optic systems have greatly improved data transfer and the gathering of information. However, complex applications require fiber optic systems to perform flawlessly, therefore, the choice of the right sensors is crucial.

The design of innovative fiber Bragg grating sensor systems has been pushed by the new societal and technological trends, such as increased mobility. Customers are looking for more data that is delivered faster both indoors and outdoors. Fiber optic sensing systems provide an easy way to install fast and reliable data links that are able to carry large amounts of data. The use of FBG sensors is expanding rapidly as they are adapted to harsh and extreme environments. It is important, however, that customers determine specific technical requirements and evaluate the possible conditions of use. FBG sensors systems provide multiple advantages that determine their wide application use. First of all, FBG sensors are able to withstand extremely high and low temperatures in a range of -40°C to +85°C. FBG sensor systems are immune to corrosion, are resistant to salt mist, vibration, and shock. The sensors are easy to handle and mount on any surface, and their coating protects them from any outside influence and significantly reduces maintenance.      

One of the areas of application of FBG sensing systems is the oil and gas industry. FBG sensors are used to decrease costly downtimes and accidents during the extraction of natural resources in hazardous offshore and onshore environments. The dependable operation of FBG sensors allows for efficient extraction. Fiber Bragg grating sensors have also improved the performance of seismic evaluation devices, monitoring, and infrastructure maintenance.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients.

We are dedicated to delivering the best products and supports to all our customers, our engineers have extensive experience and strong technical expertise in creating fiber Bragg grating products.

If you would like to purchase FBG sensors, please contact us: info@optromix.com or +1 617 558 9858

Fiber Bragg grating sensors in chemical sensing

Chemical sensing is a developing field of fiber Bragg grating sensors. It is involved in the control of chemical processes, oil recovery, environment quality improvement. There are several factors that play a role in the implementation of chemical sensors – suitability for remote sensing, sensitivity, low costs, selectivity, ability to work consistently in harsh environments. The oil and gas applications require sensors that can withstand high temperatures and pressures, and environmental sensors must have a wide coverage area and limited signal fluctuations.

Fiber Bragg grating sensors have been used in numerous applications, including aircraft monitoring, structural health monitoring, strain, and temperature measurements. In the last decade, FBG sensors have been implemented as chemical sensors due to their ability to withstand high temperatures, immunity to electromagnetic interference, and the absence of electronics.

The main principle of FBG sensors for applications in chemical sensing is based on the axial strain of the fiber. The chemicals that surround the fiber causes it to shift and deform. The strain caused by the presence of a particular chemical causes the spectral pattern of reflected light to change; the shift in reflected wavelength is observed. To monitor the shift in wavelength FBG interrogators are used. The data gathered by the interrogator can then be converted to environmental concentrations.

The key component of fiber Bragg grating sensors for chemical sensing is a highly sensitive coating. The coating should be stiff and adhere easily and firmly to the glass fiber. Most often the coating is based on polymers. However, the coating needs to have a high modulus of elasticity that remains high at high temperatures and during analytes absorption. Most polymers are restricted by temperature due to softening and material relaxation.

Some ways of FBG sensors polymer coating include:

  1. improved coating processing;

The improvement of the coating process, like improved adhesion, may aid in the reduction of material relaxation and shifting. The glass fiber may be treated before the application of polymer coating for improved adhesion.

  1. improved data processing;

The use of two different coatings that respond in equal, but the opposite manner to environmental changes. The combination of the two responses limits the temperature drift.

  1. improved material properties.

Alternative coatings, like ones based on ceramic materials, may expand the temperature application range.

Optromix, Inc. is a U.S. manufacturer of innovative fiber optic products for the global market, based in Cambridge, MA. Our team always strives to provide the most technologically advanced fiber optic solutions for our clients. Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line: fiber Bragg grating sensors, FBG interrogators, and multiplexers, Distributed Temperature Sensing (DTS) systems. We create and supply a broad variety of top-notch fiber optic solutions for the monitoring of various facilities all over the world. If you would like to purchase FBG sensors, please contact us at info@optromix.com

Fiber Bragg Grating Sensors in biomedical science

Biomechanical engineering experiences rapid development as a result of FBG sensor application to strain and deformation measurements. The use of fiber Bragg grating sensors in biomedicine is a promising new method of enhancing biomechanical studies.

Fiber Bragg gratings were proposed for use in medical applications at the end of the 20th century. Some of the applications were monitoring ultrasound fields, monitoring the temperature inside nMRI devices, foot pressure monitoring in diabetic patients, etc.

One of the first uses of FBG sensors in biomedicine was an electrically assisted ventilation device triggered by an FBG sensor. A deformable strap was placed on the patient’s chest; the strap had FBG sensors embedded into it that were measuring chest deformations that were caused by air inspiration. A threshold level was set to produce a trigger signal to stimulate the phrenic nerve. Nowadays FBG sensors are used in medical-grade textiles for healthcare monitoring.

Fiber Bragg grating sensors provide several advantages over traditional methods of measuring ligament and tendon deformation and strain, namely an opportunity to record the deformations under several postures. For example, a foot pressure sensing system with embedded FBG was presented; it contains several carefully calibrated FBG sensors in an optical fiber strand. The distribution of transversal pressure and its analysis help to indicate abnormal standing gait in diabetic patients.

The research suggests that FBG sensors are superior to traditionally used strain gauges in soft tissue strain measurement. FBGS easily adhere to a bone or a curved surface; their dimensions are more compatible with bone size than those of the strain gauges; they are easily implantable, highly accurate, and less invasive.

The use of fiber Bragg grating sensors in intervertebral disc pressure measurements is very promising as it is significantly more sensitive than other measuring methods. Moreover, the FBG sensors are more compact which allows them to be inserted through a needle, and to be used for small discs, e.g. cervical or biodegenerated.

Fiber Bragg sensors proved to be useful in a femoral prosthesis. The multiplexing ability of FB sensors allows us to place several sensors on a prosthesis surface and connect them using a single optical link to interrogate all of them. The sensors aid in locating potential failure areas in the prosthesis under normal strain conditions.

Optromix is a fiber Bragg grating sensor vendor; we manufacture innovative fiber optic products for the global market. We are dedicated to delivering the best products and supports to all our customers, our engineers have extensive experience and strong technical expertise in creating fiber Bragg grating products. If you would like to buy FBG strain sensors, please contact us at info@optromix.com.

Structural Deformations measurement using FBG sensors

Fiber Bragg Grating (FBG) sensors are widely used to measure various physical parameters; such as liquid level, weight, temperature, vibration, etc. They are also used in structural health monitoring systems and environmental conditions.

Structural deformations are one of the most significant factors that affect machine tool (MT) positioning accuracy. These induced errors are complex to be represented by a model, nevertheless, they need to be evaluated and predicted in order to increase the machining performance. The solution is based on the use of a multiplexed optical fiber sensor with a sufficient number of Bragg gratings for strains measuring embedded in the structure. The high sensitivity of the sensors ( 0.2 με ) suggests to employ them in the MT with high stiff structures. FBG sensors are suitable to measure both strains and temperature with very high accuracy and resolution. FBG sensors may offer many advantages since they ensure a dynamic performance up to 260 Hz, permitting the exposure and measurement of distortions acting during the working operations. The determination of the tooltip displacement is a complex process if it is directly extrapolated from the strains. For this reason, it is more convenient to employ FBG as a displacement sensor and to measure the overall integral effect of some critical point-to-point dimensions of the MT geometry.

The conventional approaches are based on models able to predict the MT deformations, studying a relationship between machine accuracy and undesired loads. Nevertheless, it is difficult to identify a general robust relation and these models need to be calibrated for every machine variant limiting their success, increasing costs, and the implementation time. In the first part of the experimental tests, the model was validated by applying a set of static loads. This analysis showed a good match between the real and the predicted position of the MT tool tip point. In the same way, the tests were replicated varying the environmental temperature over time.  Scientists highlight the significant advantages of applying FBG sensors in MT calibration such as their high sensitivity, geometrical versatility, lightweight, immunity to electromagnetic interference or chemical agents, high durability. Nevertheless, it also underlines the limits of this method. In particular, the accuracy of the model depends on the number and the position configuration of the sensors implemented in the structure. The choice of specific statistical methods may improve the accuracy of the model. In light of these results, the next steps of the research will be based on the fabrication of new prototypes changing the position configuration of the FBG sensors.

Inclination measurement system: incline FBG sensors

Fiber Bragg Grating sensors one of the most requested fiber optic technologies have superior sensitivity and frequency specifications, making them well suited for many spheres of applications. The FBG inclinometers can be used to identify internal damage at a very early stage.  The FBG inclinometers are devices used to monitor subsurface movements through sensors designed to measure inclination with respect to vertical. When installing the FBG inclinometer casing, it is important to select the appropriate diameter. The large-diameter casing is better suited to shear zones, multiple shear zones, and slope failures. Moderate- to small-diameter casing can be used for short-term installations or slopes where smaller displacements distributed along the borehole are anticipated. Correct installation of the casing is important; and deep holes, particularly the influence of helical deformation must be considered. A conventional FBG inclinometer system consists of a plastic casing that is installed in a nearly vertical position in the ground, with a servo-accelerometer or electro-level sensor inserted into the casing to measure the local tilt of the casing in response to ground movement. The sensor element is lowered and raised, guided by grooves in the inner surface of the casing, with the tilt of the casing being recorded at fixed spatial intervals.

Incline FBG sensors have been widely used to monitor ground movements in various applications, for example, landslides, tunnels, and foundations, etc., where they provide vital ground movement information including magnitude, rate, and location. The produced information can be used for checking design assumptions and provide early warning of problems.

Another type of FBG sensors that can monitor inclination is a tiltmeter. Tiltmeters are devices used to monitor the change in the inclination of a ground surface point. The device consists of a gravity sensing transducer capable of measuring changes in inclination as small as one arc second. They are used to monitor slope movements where the landslide failure mode is expected to contain a rotational component. The advantages of using tiltmeters are their lightweight, simple operation, and relatively low cost. They may be combined with an incline FBG sensor and extensometers in what has been termed as integrated pit slope monitoring systems.