Distributed Sensing Systems for Leak Detection

The increasing role of the oil and gas industry has led to development of many related technologies including distributed sensing systems. Among other things, they have become a part of the leak detection technology that has proved to be one of the most powerful.

For development of the most cost-effective detection technology there should be a balance between three elements: well-trained staff, properly configured distributed monitoring systems and proper operations’ arrangement. By observing these conditions, the effective operation is achieved.

With distributed monitoring systems, the pipeline management leads to the fast detection of any accidents, thus, reducing the extent of damage, as well as unforeseen expenses.Distributed Sensing Systems for Leak Detection

The Most Common Classification of Distributed Sensing Systems

Distributed sensing is a continuous monitoring technique which operates across the whole fiber optic cable in real time.

In contrast with the conventional sensors that were previously applied, distributed sensing systems use the whole optical fiber instead of the separate sensors that measure parameters in certain points. For this reason, fiber optic systems are easier to install even in heavy ambient conditions. With fiber optic cable, specialists have no need in defining particular locations where sensors should be placed. This fact makes the monitoring process more cost-effective.

The distributed sensing systems are different due to the data they require. So, there are distributed acoustic sensing (DAS) or distributed temperature sensing (DTS).

  • Distributed temperature sensing (DTS) uses a fiber optic cable that serves as linear temperature sensors. Eventually, specialists get the full temperature profile for the required period.
  • Operation principle of the distributed acoustic sensing (DAS) is similar to the DTS system. It applies a fiber optic cable as well, that provides the data. However, instead of registering temperature changes, they are relying on the acoustic and vibration changes in fibers.

Applications of the Leak Detection Systems

Leak detection fiber optic systems are installed to get the information about any appearing changes in parameters and leak possibilities. The distributed monitoring systems are able to find leaks almost instantly.

Here are a few examples where fiber optic sensing systems have found their applications:

  • One of the last well-known developments connected to fiber optic sensors is the monitoring of offshore Arctic fields. Pipelines are constructed for safe transportation of oil and gas avoiding any leaks. However, there are high risks of their deformation because of the severe environmental conditions like the effects of ice gouging, permafrost thaw settlement, or physical damage. The absence of fiber optic monitoring systems may result in severe environmental, and economic impacts.
  • Distributed sensing systems can be also applied for liquid sodium leaks monitoring. Fiber optic sensors can be implemented into various nuclear power plants and other facilities. Electromagnetic immunity, ability to resist high temperatures and operating in radioactive environments make fiber Bragg grating sensors a powerful instrument in monitoring.
  • Distributed monitoring systems are also used at wastewater treatment plants. The leak can lead to dangerous consequences such as spillage of contaminated fluids and therefore environmental damage.

Main Purposes of the Fiber Optic Technology Applications in Leak Detection

Fiber optic sensing systems bring many benefits while using. As a result, they have become useful instruments and can be applied for different purposes. Firstly, distributed monitoring systems are usually used for monitoring any changes that take place over long distances of the pipelines. Fiber optic sensors can monitor flow rates, temperature, pressure, ground strain, etc. All measured physical parameters are sent to the center where all the data is displayed with the help of the software.

Due to the received data from fiber optic monitoring systems, specialists are able to watch any changes or conduct the necessary calculations. In case of any changes, the operator or security personnel gets a signal that there are changes and sees their accurate site. So specialists can quickly respond to any changes and prevent any further possible damage.

The other purpose of distributed sensing monitoring is leak detection. Fiber optic monitoring systems can be installed both on buried and unburied pipelines. They can detect the precise location of the leakage in a short time. Moreover, they can discover other accidents like ground disturbances, theft, manual and machine excavation, etc.

Fiber optic monitoring systems designed for the oil and gas industry can also help in optimizing the lifetime of the wells. They are used as integrity monitoring instruments of the storage tanks, process vessels and other equipment. Considering all the information, specialists can make a decision on the maintenance programs as a means of extending the service life.

Due to all these possible applications, distributed sensing systems have found their place in the gas and oil industry. Fiber optic sensing systems have proved to be cost-effective in measurements of main parameters in pipes in the conditions of severe environmental and industrial equipment.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Distributed Temperature Sensing Systems for Coal Mines

Distributed temperature sensing systems as well as fiber Bragg optic sensors are focused on the continuous monitoring of the constructions’ health condition and prevention of potential damages. The DTS system consists of a fiber optic cable, typically several kilometers long, that works as a temperature sensor. As a result, specialists can watch all dynamic temperature changes in a continuous temperature profile.DTS Systems for Coal Mines

DTS Systems as a Fire Detection Technology

In the mining industry, the risk of fires still remains very high. Conventional fire and heat alarm systems require constant and expensive maintenance and are not as effective as fiber optic monitoring systems. Thanks to modern DTS technology, both of these problems are now solved.

There are many forces in mines that can cause a fire. The possibility of fire is especially high in certain locations due to the complicating factors such as:

  • geological settings;
  • presence of the vehicles, heat-generating and mobile equipment;
  • conveyor failures;
  • lighting faults, etc.

Distributed temperature sensing systems have been proven to outperform standard fire detection systems in a range of aspects including efficiency and high level of safety.

The DTS system includes a single fiber optic cable and a DTS unit. The traditional system includes many components and devices. The distinction of DTS results in lower installation and maintenance costs due to less equipment, and in improved system reliability. Therefore, there is no need in its regular service that can be complicated because of the difficulty of access and huge size of the mine. Moreover, the conducted field projects have demonstrated that fiber optic sensors inform the operators about the heat significantly earlier than a fire starts.

All these advantages have made DTS technology one of the main methods for the detection of potential fires or other abnormal conditions.

Fiber Optic Sensors for Detection of Faulty Conveyor Belt Rollers

The conveyor belts are cost-effective instruments for continuous transporting of dry bulk materials over various distances. Due to the latest technologies, the accidents related to the problems with conveyor belts are relatively rare in modern underground coal mines. However, to this day there is a possibility of causing damage related to the conveyor belt accidents that can result in the interruption of the production process.

The reliability of the whole conveyor belt depends on the robustness of its separate components. Distributed temperature sensing (DTS) system helps to monitor the thermal conditions of each idler and detect the malfunctions. DTS systems use the latest advancements of fiber optic technology. They have proven to be a safe method of application in underground mines.

There are some aspects to consider when choosing the suitable monitoring system. Firstly, it is not easy to obtain data from a vast area. It requires the setting up of thousands of sensor elements. Secondly, the data transmission can be challenging due to the underground mine environment. Therefore, some types of equipment are prohibited for usage, such as electrical cables. Fiber optic monitoring systems have been able to solve a number of such issues that engineers usually face during underground mining.

The DTS system consists of a DTS unit and a fiber optic cable. The system measures temperature along the entire length of the cable and transmits the data to the operators who can detect any mechanical failures of the rolling components at an early stage. The specialists see real-time data of the conveyor structure and the surrounding area.

The specialists conducted a range of experiments to find the most effective placement of the fiber optic monitoring system. The problem is that fiber optic sensors can’t be located over the idlers because they will interrupt the operation. So they are attached to the frame of the idler, as close to the bearing as possible. This affects the results because fiber optic sensors take longer to capture the heat. However, they still have better results compared to the traditional methods.

Fiber Optic Sensing for Monitoring of Roof Activity

According to statistics, there are many causes that can lead to mine accidents including dust explosions, mine support deterioration, etc. However, the most common cause of the accidents that take place in underground coal mines is mine collapse.

Design and functioning of the underground mines creates a number of complicated factors for operation. The dynamism of mining operations and increasing depth can lead to the associated risks and jeopardize an acceptable level of safety. At the same time, there are always natural risks to the mine structures, such as seismic shocks which can also lead to roof stratum displacements.

Roof activity monitoring can be used for a variety of purposes, including structural health construction monitoring of the underground openings and design optimization. For the majority of projects, fiber optic monitoring systems are applied due to their ease of use in harsh environments compared to other conventional methods.

Fiber optic sensing monitoring is able to help in reduction of the mine roof displacement and thus avoid severe consequences. There are different types of fiber Bragg grating sensors that are used to monitor displacement, temperature or strain in underground openings or nearby them depending on the purposes. FBG sensors have proved to be reliable and accurate monitoring equipment of roof activities in underground coal mining. Modern fiber optic monitoring systems have made it possible to display all changes of the required parameters on the screen almost instantly and prevent any accidents in underground mines.

The conducted projects on the mining sites have demonstrated the benefits of fiber optic sensors. The fiber optic monitoring systems can detect the slight roof displacement during the progressive face advance. The received data is usually used for roadway support and design of the mine.

In conclusion, thanks to the latest state-of-the-art technologies nowadays there is an opportunity to monitor structural health constantly. That is why distributed temperature sensing systems are widely applied for structural health monitoring of different constructions including mines. The fiber optic sensing has found many spheres of applications due to the qualities it has.

Optromix is a DTS system manufacturer that provides top of the line distributed temperature sensing systems suitable for monitoring commerce networks. If you have any questions or would like to buy a DTS system, please contact us at info@optromix.com

Fiber Optic Sensors for Underground Coal Mines

Thanks to the fiber optic sensors, a number of fields and industries have found new approaches in safety and production processes. As a part of fiber optic technology, fiber Bragg grating sensors have proved to be an effective technique of monitoring and security insurance.FOS for Underground Coal Mines

Fiber Optic Sensing Applications in Underground Mining

Underground extraction of the minerals continues to be a high-risk industry. This industry has become highly dangerous because of the permanent presence of difficult challenges. Such factors as dynamic changes, hidden defaults and seismic tremors can lead to disastrous consequences.

Due to the advancement of fiber optic technology, there is an opportunity of constant monitoring with the help of fiber optic sensing systems. Fiber Bragg grating (FBG) sensing has already demonstrated its abilities in other directions like for monitoring of the dams and bridges. For mining, the deployment of FBG sensors has become possible because of the properties they have such as high and long-term sustainability and high resistance to electromagnetic events.

This article presents the most common applications of the fiber Bragg grating (FBG) sensing in the coal industry.

Fiber Optic Sensors for Structural Safety of the Mines

Distributed sensing can be called a crucial component in the structural health monitoring of the underground mines. Previously, devices for the structural health construction monitoring couldn’t allow watching the data 24/7, and thus, respond quickly in such environmental conditions. However, today’s fiber optic monitoring systems make all this possible.

Due to the fiber Bragg grating sensors’ qualities, like reliability, they are able to constantly track the extractive activities. Moreover, thanks to their high level of sensitivity, there is a possibility to detect the slight modifications in equipment functioning and prevent severe damages at an early stage. So, fiber optic sensors are fit for mine structural monitoring as a proactive damage detection system and as one of the accident prevention strategies.

Therefore, fiber Bragg grating (FBG) sensing is able to ensure the necessary level of safety in mines. It provides the estimation of the mines’ present environment when FBG sensors collect and transmit the data remotely.

Fiber Optic Sensing for Coal Dressing Chamber Bottom Plate

Apart from safety monitoring of the roof activity, there is an opportunity to monitor changes in the coal dressing chamber bottom plate with the fiber optic monitoring systems. However such monitoring has a range of aspects that should be taken into account.

  • Firstly, huge equipment occupies most of part of the chamber. During the coal production it produces vibrations that may influence the stability of the mine country rock. This fact should be considered while installing fiber optic technology.
  • Secondly, monitoring systems should be immune to electronic interference. That is a great benefit of the fiber optic sensing, especially for the chamber, where electromagnetic interference phenomenon is strong.
  • Thirdly, the system shouldn’t interfere with the operation of the equipment.
  • Fourthly, due to the constant production around the coal separation chamber it is complicated to get accurate information.

Nowadays, fiber Bragg grating sensors can not always be applied for monitoring of the coal dressing chamber bottom plate. Still, there are some challenges that specialists can face. The lack of space, chances of inaccurate data and other difficulties can make fiber optic sensors’ setup harder or even impossible. As well as wet environments, FBG sensors are often applied in heavy environmental conditions, and specialists got used to developing such projects.

Microseismic Monitoring System as Part of the Fiber Optic Technology

Microseismic monitoring technology is an important instrument designed to prevent any dangerous accidents with the help of seismic assessment and alert about any changes.

Fiber optic sensing has also been successfully applied as a microseismic monitoring system for coal mines. The sensors were suggested to use because of their significant advantages such as large dynamic range, high sensitivity, etc.

Due to the conducted experiments, fiber Bragg grating sensors were installed in the tunnels. During the field projects they have proved to be effective by providing all the data about dynamic activities in the mine accurately. Such level of accuracy is possible due to the fact that the microseismic data are tracked over the full length of the installed fiber optic cable. The interrogation system collects the data, provides the seismic interrogation and transfers the received data. It allows improving the dynamic range and installing more fiber optic sensors. Both these factors increase the positioning accuracy of seismic events.

All in all, monitoring with fiber optic sensors in combination with the automatic processing of data can bring major benefits to identification of any changes, malfunction of mine operation and damage prevention.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Fiber Optic Sensor (FOS) Technology and its Applications

Thanks to all the advantages of the fiber optic sensor (FOS) technology and its diversity of instruments, described in the previous article, there are a range of applications. Structural health monitoring of the concrete constructions is proved to be the most effective tool for management of the infrastructure, due to the latest results.FOS Technology and its Applications

Here is a list of the most common applications where fiber Bragg grating sensors can be installed.

Bridges

The lifetime of every large bridge is several decades or hundreds of years, including the period of construction and repair stages. Despite the improved quality of the bridges’ planning, it is still difficult to accurately predict its lifetime because of the complex structures and external influence like corrosion or the natural disasters like earthquake, flood, etc.

The structural health monitoring in real time gives an insurance of the safety of bridges. According to the researchers, this fiber optic system can be applied on the different stages of the bridge construction. Most of all, these fiber optic monitoring systems are used in the operation or safety phase of bridges and extend their lifespan.

The FBG structural health monitoring systems include fiber optic sensors, multiplexers, FBG interrogators, local and remote computers.

All in all, the fiber optic monitoring systems provide the following advantages:

  • Control of state of metal structures;
  • Control of the bridge oscillation frequency;
  • Notifications for the personnel on screen;
  • Extending the bridge’s lifetime, etc.

Moreover, when we talk about the railroad bridges, it is also possible to evaluate the lower bridge beam condition.

Buildings

The state of the load-bearing structure and building foundation is a crucial element of safety. And fiber optic sensors have made a great contribution to it.

The structural health monitoring can be applied whether for the buildings under construction or for the old houses when there is a severe level of damage and degradation of materials. Unfortunately, the majority of the houses that were built before, mostly in the previous century, are particularly vulnerable to environmental actions. Basically, because there was no specific constructive detailing that would provide the age resistance of the constructions.

The degradation usually includes steel corrosion, debonding of concrete, etc. It becomes visible when the damage is greatly extended on the elements of the structure. If the moment for the structural repair is missed, it often leads to its more complex and expensive modernization. At worst, there is a need for demolition.

Mostly, fiber optic technology is used for:

  • Control of the strain-stress state of metal basic structures and foundations;
  • Monitoring of the cracks and foundation shrinkage in reinforced concrete structures;
  • Snow load control.

Tunnels

The structural health monitoring systems have also made a great contribution into tunnel construction.

The most important safety factor in tunnels, as in many civil structures, is the deformations. Fiber optic sensors can monitor and provide the useful data both within the construction phases and over the long term. In the long term, monitoring calls a very stable and precise system that can compare deformation measurements over long periods. In the short term, the monitoring system can measure deformations that occur for relatively short periods.

The structural health monitoring system influences the tunnels’ management and security by providing in-time maintenance and restoration. There is a problem of excessive deformations which can seldom affect the structural security, but can cause durability problems.

For example, such fiber optic monitoring systems can be applied during the highway tunnel’ construction to measure the tunnel load or to monitor railway tunnels. Besides, the knowledge of the tunnel’s behavior helps while the introduction of the modern building techniques or for the prolongation of its service life in the future.

Hydroelectric and Wind Power Plants

Fiber optic solutions have found their applications for nuclear, hydroelectric, wind power plants. Aging management of the components is directly related to their operation. Safety requirements guarantee their safe operation but still are difficult for operators to track fully. All kinds of power plants require the accurate and qualified assessment of the thermomechanical loads and other parameters that can lead to the early aging of the equipment.

Fiber optic sensing is one of the best monitoring and maintaining systems for the plants. Structural health monitoring (SHM) of hydroelectric plants, wind turbines and others gives operators real-time information of the components’ condition.

Dams

As for the dams, fiber optic technology helps in detection of the seepage flow changes in a dam structure. Dams usually face different problems connected to external loads such as water level changes, seismic disturbances, etc. Any changes in numbers can be a sign of erosion which is the most common cause of the dam failure.

Fiber optic system allows operators to get the data from all over the dam as measurements are taken along the full length of the cable. Distributed sensing detects the tiniest changes in rates that otherwise can lead to the operational failures.

Fiber optic sensors are able to measure various parameters and quantities in structural health monitoring. Depending on the required operating principles, specialists discuss which type of FBG sensor is the best suitable and their way of embedding and surface mounting. All in all, their final goal is to find the most effective fiber optic solution for the operating principle and potential applications in SHM.

The short list of applications can be also found on our website.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com