Fiber Optic Technology and its recent advances

Fiber Optic Technology advancesDuring the last 60 years, fiber optic technology has been applied to improve the efficiency of developed systems in various spheres like medicine, vehicles, and other industries. Modern fiber optic solutions expand the abilities by implementing levels of data and sensing technology in the energy, medical field, and even aerospace. There are various fiber optic solutions that help researchers improve their development and make new discoveries in science.

Intrinsic and extrinsic fiber optic sensors are two wide categories of fiber optic sensors. Extrinsic fiber optic sensors utilize the fiber to manage the light to a sensing region. Then the optical signal is modulated in another environment. Talking about the intrinsic fiber optic sensors, the light remains within the waveguide. So it measures the influence of the optical fiber signal.

Intrinsic fiber optic sensor technology, where the fiber optic sensor is the fiber optic cable itself, has improved significantly during recent years. There are two main technologies connected to intrinsic fiber optic sensors: scattering and FBG. FBG methods can be fully distributed or have many sensing points. With the help of FBG sensors, scientists can define the changes by getting precise measurements. Scattering techniques depend on natural imperfections occurring in the fiber optic cable. The FBGs have a high signal-to-noise ratio in comparison with scattering techniques.

Both scattering and FBGs use different demodulation techniques. Scattering techniques get the information by observing changes in naturally back-scattering patterns. For FBG based technology, wavelength division multiplexing is the most prevalent demodulation technique. However, in certain circumstances, optical frequency domain reflectometry can become the most useful method.

Wavelength division multiplexing is able to spread to large distances and get the data rapidly. This technology can also support multiple fiber Bragg gratings on a fiber. It observes critical points more than the whole field of the data. That is why it is mostly applied in automobile crash testing as a monitoring instrument.

The scattering techniques can cover long distances and give a distributed profile of the data. They obtain information all over the entire fiber optic cable. Many systems on the market measure temperature or acoustics and are called Distributed Temperature Sensing (DTS) or Distributed Acoustic Sensing (DAS). These techniques are usually applied in monitoring a pipeline for tampering, for example, where there is no need for high-speed acquisition.

Optical frequency domain reflectometry is another demodulation technique that is mostly applied with FBG sensors where fiber Bragg gratings are placed really close and create a fully distributed sensing fiber. It has many advantages like the combination of high spatial resolution, a bunch of fiber optic sensors, a quick refresh rate, and a full distribution set. Apart from distributed sensing of a strain and temperature, this technology allows defining 2D deflection, liquid level, magnetic fields, etc.

Nowadays, thanks to fiber optic technology, scientists have an opportunity to solve any problems in their designs by using fiber optic systems. And there are still many possibilities for fiber optic technology in the future.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Distributed Acoustic Sensing (DAS) in exploring the ocean

DAS in exploring the oceanExploring the underwater environment that covers most of the Earth’s surface is one of the most difficult tasks. The easiest way is the usage of distributed acoustic sensing (DAS) technology. However, the fbgs sensors’ setting is also not so easy because of the environmental conditions. Despite this fact, distributed acoustic sensing has a huge potential for observing processes in the future.

Fiber optic solutions are the new methods of geophysical information registration that can be applied both onshore and offshore. The scientists used transmission time-of-flight of laser pulses inside transoceanic subsea fibers to note seafloor strain. To explore seafloor strain with higher spatial resolution, they utilized a distributed acoustic sensing (DAS) system.

Distributed acoustic sensing technology helps to observe the ocean and solid earth phenomena. The scientists applied a fiber optic cable and a distributed acoustic sensing (DAS) unit operating onshore. DAS technology uses a photonic device that sends short pulses of laser light through fiber optics. DAS detects the backscattering set by strain in the cable caused by stretching.

The researchers could get even more data than expected. They could record underwater earthquakes, volcanic activity, and a range of micro hydrodynamic signals. The scientists monitored the acoustic waves by alterations in laser light along the fiber optic cable. Recordings of a small earthquake wavefield demonstrated several fault zones underwater. Distributed acoustic sensing could picture earthquake hazards in the coastal oceans and give new data about fault orientations and seafloor structures. The DAS system displayed the state of the sea and its changes during a storm cycle. These observations proved the necessity and potential of this method for marine geophysics.

There are still aspects of this distributed acoustic sensing research that should be improved. One of them is the fact that current DAS instruments can only see lower frequencies. However, such frequencies are considered to be low for acoustics, but it is high for seismologists and enough to locate boat signals. The research team also explores the possibilities of tracking mammals, for example, whales with the help of distributed acoustic sensing technology. The second challenge is the fact that the scientists don’t know where exactly the fiber optic cable is. Because seabed bathymetry can affect the signals and influence DAS senses. Nowadays, it is possible to use only the initial part of the fiber optic cable, up to 200 km. But it already allows capturing a number of spheres of science.

As a result of the research, the observations with the DAS system during just a few days helped to create a map of an unknown fault system and detect several dynamic processes in the water. The distributed acoustic sensing technology could help to get rid of a huge gap in ocean sensing.

According to the researchers, the production of fiber optic systems based on the DAS technology can be easily automated. However, there is still a space for developing and finding new ways of optimization.

Optromix is a DAS system manufacturer that provides top of the line distributed acoustic sensing systems suitable for monitoring commerce networks. If you have any questions or would like to buy a DAS system, please contact us at info@optromix.com

Fiber Bragg Gratings (FBG) sensors’ applications

FBG sensors' applicationsThe sensing technology market has a rapid growth in the last few decades. Most of all, this is explained by the main advantages like small size, environmental and electrical immunity, and distribution capabilities. The new units of FBG sensors and fiber optic cables are valuable instruments for monitoring industrial processes and infrastructure. That’s why fiber Bragg grating (FBG) sensors are applied in many different spheres.

Fiber Bragg grating (FBG) sensors are becoming more popular each year because fiber optic applications are spreading in different aspects of life and science. Some of them are security, transportation, civil engineering, medical, and etc.

Despite the diverse application space, the market driver for fiber Bragg grating sensors has been monitoring smart structures like bridges, dams, and pipelines. FBG sensors also have had an impact on the aerospace industry by controlling the temperature, vibration, strain, and other data in real-time.

There are a lot of fiber optic applications in the oil and gas industry. Fiber Bragg grating technology, fiber optic monitoring systems, and distributed temperature sensing are commonly applied for in-well temperature monitoring and exploration activities. Distributed fiber optic sensors are also widespread in the wind power industry. They are used for the measurement of stress and strain in turbine blades.

In medicine, the ability to perform all the fiber optic solutions’ benefits is very useful for operations and certain medical procedures. Fibers can be inserted in hypodermic needles or catheters. That allows for more precise positioning of the fiber optic sensors. Moreover, fiber Bragg grating sensors are applied for temperature profiling near patients’ internal organs. And finally, FBG sensors are produced for endoscopic/colonoscopic pressure profiling.

Fiber optic technology has an impact on chemical and biochemical sensing. There are bioassays based on fiber Bragg gratings as the sensing element for protein or DNA interactions.

Nowadays, because of the development of fiber optic solutions, new fiber Bragg gratings were created. They are able to cope with high temperatures and harsh environments. It is highly useful and even crucial in power plants and for combustion and jet engines.

Today FBG sensors are becoming irreplaceable tools in different fields because of their simplicity in comparison with other technologies and advantages that they provide. And according to the tendency, fiber Bragg grating sensors will continue to apply in many existing and emerging applications.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

FBG sensors as a part of a mercury detection system

Fiber Bragg Grating sensors as a part of the mercury detection systemResearchers from India have presented a new development. Thanks to it the scientists can find toxic mercury in drinking water. The whole system is based on FBG sensors.

Fiber Bragg grating (FBG) sensors are utilized widely in industrial and commercial applications with the addition of fiber optic solutions. FBGS sensors are especially effective in stabilizing the wavelength of semiconductor lasers and are useful in extracting a single wavelength from the fiber. Fiber Bragg grating sensors are popular in different spheres, including aerospace, robotics, the oil and gas industry, etc. Achievements in creating fiber optic sensors and their applications make the Fiber Bragg grating sensors appropriate for other spheres and developments.

That’s why scientists from India decided to apply Fiber Bragg grating sensors to the mercury detecting system. We can find mercury particles everywhere in the environment. They can be produced not only by human-made causes, like industrial wastes but also by natural ones, for example, combustion of fossil fuels and volcanic eruptions. That’s why the creation of the mercury detection system with the help of FBG sensors was a very important step.

According to medical studies, mercury particles can easily enter the human body. The most common ways are water bodies and marine life. In the human gut, some microorganisms can turn mercury into organic and alkyl forms. These forms of mercury in the human blood-vascular system can lead to diseases of kidneys, nerves, endocrine, and other systems. So the mercury detection system based on fiber Bragg grating sensors plays a crucial role in health care activities.

The developed by the research team FBG sensors are portable in comparison with other traditional techniques. These techniques are gas chromatography and liquid chromatography methods were tested by time. They are considered to be precise and complicated. And they are not portable like fiber Bragg grating sensors. Moreover, they need much time and get more expenses because are made in special laboratories by professionals.

Scientists think that fiber Bragg grating sensors are an ideal decision for the developing mercury detection system. Fiber Bragg grating principles help to make this system cost-expensive and highly effective in comparison with the others. However, they agree that there is still a lot of work to do and Fiber Bragg grating sensors can be updated in the future.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, FBG strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Fiber Optic Solutions for smart cities

Fiber optic solutions for smart citiesThe topic of a smart city and how it should be implemented is one of the most discussed today. The problem is everyone understands something different by this term. However, all people agree on one thing — the advent of the era of “smart cities” is inevitable and fiber optic solutions play a crucial role in it.

First of all, the smart city is a modern urban management system, convenient transport, efficient fiber optic solutions, developed internal procedures of the urban environment. They also include modern channels of interaction with residents, infrastructure, big data, etc.

Additionally, the smart city is a big amount of data that is structured, accessible, and properly secured. When these factors are combined and managed, then the smart city will appear.

Components of smart cities

The elements of the smart city, in general, contain smart energy, a resource supply system, smart transport and security system provided by fiber sensors, a system of social services, and urban management. Only when all these parameters come together, this is a full-fledged smart city, not its elements.

In the smart city concept, the conventional infrastructure of housing and utilities is equipped with modern fiber optic sensors. Herewith, controllers and video cameras, connected to broadband networks and integrated with a platform for data collection and processing are installed too. All this data is analyzed and allows achieving great efficiency and optimization of city services and local businesses, whether it is the expenditure of resources or the management of passenger traffic.

In theory, everything looks simple, but in reality, there are a lot of obstacles. Those who develop the ideology of a smart city have to face a lot of barriers, both typical for large IT projects and individual ones. This fact seriously complicates the process. Cities must meet one common requirement to become smart: to collect reliable information (from fiber optic sensors). Based on data it is possible to develop fiber optic solutions for the long term because data is crucial in our time. If you integrate fiber sensors into the city’s infrastructure and create new data collection points — including from citizens with their mobile devices — the smart city administration will be able to analyze big data to more accurately track and predict what is happening. This is also evident in the deployment of communication systems: local fiber optic networks, municipal Wi-Fi, specialized applications for specific tasks (smart parking, street lighting, waste disposal, and recycling).

As already mentioned, the concept of a smart/safe city includes components from a wide variety of areas of life. Moreover, the consumers of these elements are both business and government organizations, as well as the residents of cities themselves.

Fiber sensors as a component of smart transport

In large cities, we are used to applying intelligent traffic analysis and route planning services. These services are based on fiber optic solutions for the collection and processing of data on vehicle movement. Nevertheless, the concept of smart transport is much broader.

Equipping vehicles with location and speed fiber sensors, as well as video cameras, allows solving a variety of tasks. For example, they provide security to logistics management. Fiber optic sensors allow detecting where the car is, what it does and how it can plan its further route.

The development of smart transport will lead to the emergence of a full-fledged autopilot for private cars. However, there are a lot of technological and legal issues to be resolved, so whether this will happen shortly is not clear.

Smart fiber sensors for security

One of the most popular and well-developed features of smart cities today is the security (in the context of protection from crime). The streets of cities around the world are equipped with video surveillance cameras connected to a single fiber optic system for collecting and processing information, which reduces the volume of crimes. But video surveillance is just one part.

Smart policing is an attempt to transform a familiar service into a more effective law enforcement tool in the face of increasing population density. There is a huge layer of fiber optic technologies that the average user simply does not notice. In addition to the video surveillance system itself, this may include:
● new communication tools that allow quickly receiving information about incidents;
● modern emergency notification systems for employees and the public;
● equipment (sapper robots, drones, etc.) that allows replacing people when they have to solve dangerous tasks or improve search and other activities;
● data collection tools that can be used as an evidence base (audio recording, etc.);
fiber optic systems for analyzing all kinds of data that allow identifying atypical human behavior or infrastructure failures at an early stage.

In the future, the concept of smart police implies the creation of centers, where all the information is collected by the fiber optic systems, especially from critical areas. Seeing the whole situation, emergency services can make decisions more quickly.

Fiber optic sensors for smart resource consumption

It is obvious that accurate accounting of resources consumed allows managing the load or making savings. Therefore, it is necessary not only to implement fiber sensors in all areas of housing and communal services but also to collect data in a single platform for centralized management. On the scale of the entire country, this is a task for years and it requires billions of dollars in budgets.

There are examples of cities around the world that are actively implementing smart resource consumption. In particular, Barcelona has introduced automated structural health monitoring of street lighting, taking into account the time of day and weather conditions. Taking into account favorable environmental conditions, solar energy is actively used here for heating water in buildings, as well as powering interactive displays of public transport stops. Nowadays a modular open-source platform is being developed. It collects and analyzes information from fiber optic sensors for the consumption of basic resources, weather fiber sensors, ambient noise, etc.

Other areas as part of the smart city

Smart education and health care (as well as other areas — mass events and tourism) allow not so much to save money but to improve the quality of life in the city. Broadband networks make it possible to significantly expand the audience listening to a particular training course. For this purpose, educational facilities are equipped with electronic boards and cameras, as well as remote presence systems. This allows solving different tasks at different levels of education — from providing compulsory secondary education to low-mobility citizens to remote higher education in the country’s leading universities.

Similar fiber optic systems in medicine allow helping patients in hospitals on the outskirts or in the regions, using the advice of more qualified specialists from the center. For example, it can be performed by a mobile carriage with diagnostic devices, a computer, a video camera, etc.

It is worth noting that the division of industries in this list is very conditional. Many tasks are solved at the intersection of, for example, resource analysis and logistics. The routes of cars that take out the garbage are planned not according to a schedule, but taking into account the data from the fiber optic sensors. They detect the fullness of garbage containers that arrive at the coordination center in real-time.

Besides, some ideas combine fiber optic solutions from several areas at once. For example, they include smart office buildings that are part of a smart city.

The main problems of implementing fiber optic sensors

From the business point of view, there are several serious obstacles to the development of real projects within the framework of the smart city concept, which still need to be improved. Individual components of the smart city have been developing in different cities for a long time. The main problem is the payback period for projects.

Therefore, the first task is to increase the level of security in cities, obviously, through the introduction of video recording systems and video analytics provided by fiber sensors. It allows automatically cut off a large part of street crimes. This is the most understandable task: it is clear how to use fiber optic technology and why it is necessary, it is easier to justify the costs.
In general, local specifics are extremely important for the smart city project, because people think differently in every city in the world, they have different needs and problems.

The issue of the security of the smart city system itself requires special mention. After all, every smart fiber sensor or device can become an entry point for intruders. The sensor software can be modified so that if there are “defects” in the security system, it will perform completely different tasks.

Usually, all fiber optic sensors are made in the dust- and moisture-proof coatings, equipped with batteries with a long working time, and support data transmission over the network.

Types of fiber sensors as fiber optic solutions

Fiber optic sensors are terminal components in the following systems:

● smart parking;
● smart garbage;
● smart road signs.

Finally, it is necessary to pay attention to the fiber sensor for monitoring the position of manhole covers and the water level sensor, which allows measuring the water and its volume in any tank.

Smart cities are predicted to have a great future. However, when it will come, it is not yet clear. The thing is that technologically, everything is ready for this. There are Big Data analysis tools, appropriate server equipment, fiber sensors that can work for ten years without recharging the battery, and appropriate communication standards. Nevertheless, this market has a lack of technological stability — the final choice of dominant standards and the formation of business models. All these help to understand how you can work and earn money here.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

Fiber optic sensors for plant detection

FBG sensors for plant detectionA novel fiber optic technology developed by researchers from Singapore becomes the basis for a novel fiber sensor for plant detection. The fiber optic sensors perform both detection and real-time monitoring of arsenic levels in underground environments. Such monitoring by distributed sensing systems is very important because it shows the presence and quantity of the metal.

The operating principle of this fiber optic system is based on the plantation of fiber sensors into plant tissue. Thus, fiber optic technology allows for detecting arsenic as low as 0.2 parts per billion. Compact and low-cost electronics records data. To be more precise, the combination of fiber optic sensors and plants operate as a fully functional environmental detection system.

It should be noted that such fiber optic systems can be useful in environmental monitoring and agriculture. The thing is that arsenic is a widespread contaminant in most crops, so its detection is crucial for structural health monitoring. Additionally, it is dangerous for human health because it causes cardiovascular disease and even cancers.

It is possible to tune selectively these fiber optic sensors to detect particular arsenic quantities. Herewith, the nanotubes used in fiber sensors do not photobleach, therefore, they have stable emission over time. These fiber optic systems are safe for plants in which they are installed. The technology has been already tested and demonstrated great improvement in time- and equipment-intensive sampling techniques.

“The newly demonstrated technique benefits from the natural ability of plants to extract analytes from their roots and move them throughout their body.” The fiber optic sensor embedded in the living plant presents perfect operation. The researchers use a camera in the fiber optic system to obtain real-time imaging and analysis. Herewith, this fiber sensor can be controlled with compact low-cost electronics.

The tests have been already carried out on spinach and rice, as well as a species of fern. Some properties of fern species promote optimizing the fiber optic sensors to locate extremely low concentrations of arsenic. Compared to the novel fiber system, conventional sensors have a 10 ppb limit.

Thus, fiber optic technology enables the development of more resistant crops to toxic contaminants. The researchers claim that it is possible to transform any living plants into fiber sensors for arsenic detection. Now it is planned to create a compact, portable fiber optic system to control the fluorescence of the sensors within the plants. Finally, novel fiber optic sensors are highly reliable no only in labs but also under field conditions.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) product line such as fiber Bragg grating sensors, for example, fbg strain sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in structural health monitoring systems and want to learn more, please contact us at info@optromix.com

New concept of distributed fiber optic sensors

distributed FBG sensorsFiber optic technology promotes a new era of the Internet because optical fibers transmit huge amounts of data information all around the world. Herewith, fibers are regarded as an excellent platform for fiber optic sensors. It is possible to spread fiber sensors over hundreds of kilometers, simply install within structures, and even in a severe environment where the application of electricity is forbidden. Nevertheless,  optical fiber sensors have some inevitable problems as well.

The operating principle of an optical measurement is based on the light that touches the medium under test but conventional optical fibers are developed to perform the exact opposite. To be more precise, the design of optical fibers includes a glass cladding, with a much thinner, inner core. Herewith, the light is sent at the inner core, and every effort is made to keep light from leaking outside. “A substance under test, in most cases, lies outside the much larger cladding. Unfortunately, guided light does not touch upon much of the outside world.”

The only solution to the problem is coupling to the cladding modes that need for the inscription of permanent, periodic perturbations in the optical fiber medium (fiber Bragg gratings). FBGs are written at specific, discrete locations. Fiber optic sensor has limits to point-measurements only because their erasement or movement are prohibited. Optical fiber sensors are perfect in spatially-distributed analysis, in which every fiber optic segment operates as an independent measurement node. Additionally, it is possible to use two strong optical waves into the optical fiber instead as an alternative to the fiber Bragg gratings.

Also, there are Brillouin dynamic gratings, which can be switched on and off at will compared to standard FBGs. It is possible to short segments of arbitrary locations, and scan along with the optical fiber. The thing is that the developed distributed fiber optic sensor is considered to be a first of its kind. Researchers have overcome some challenges: they succeeded to demonstrate the accurate measurement of refractive index outside the cladding boundary of traditional, unmodified optical fiber resulting in an 8cm spatial resolution. Herewith, the analysis demonstrates proper identification of short fiber optic sections immersed in water and ethanol, and clearly distinguished between the two. 

The researchers claim that it is a new concept of distributed fiber optic sensors. Such fiber sensors allow overcoming a decades-long challenge: fiber optic sensors perform the distributed mapping of refractive index outside the cladding of conventional optical fiber, where light does not achieve. The applications of distributed fiber optic sensors include leak detection in critical infrastructure, and process monitoring in the petrochemical industry, desalination plants, food and beverage production, and more.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Fiber optic seismic sensors from submarine cables

FBG sensors in seismologyA team of researchers from France proposes for the first time the opportunity to detect the propagation of seismic waves on the seafloor by fiber optic seismic sensors made from submarine telecommunications cables. The researchers confirm that the potential application of such seismic sensors includes the use of existing infrastructure for the detection of earthquakes, as well as swell and underwater noise.

It should be noted that about 1.2 million kilometers of telecommunications cables cut across the ocean floor that is equal to three times the distance from the Earth to the Moon. The cables consist of optical fibers leading to simple communication by phones, SMS, or e-mail. Herewith, the optical fibers could soon find a new application, that of detecting acoustic and seismic waves.

To be more precise, the researchers apply a 41 km-long fiber cable installed at the coast of Toulon in southern France for their tests to obtain data from the fiber optic sensors of the underwater observatory that is at a depth of 2500 m. Moreover, a special technique based on small impurities in the optical fibers is used for sending light back to the transmitter.

The thing is that “by stretching or contracting the optical fiber, the passage of a seismic or acoustic wave alters the distance between these impurities, and thus the backscattered signal, by a tiny amount.” Nonetheless, the researchers have to prove the opportunity to detect these differences in submarine fiber optic cables because of the insulating layers that surround the optical fibers.

Thus, the pulses of light put at the optical fiber and allow analyzing the backscattered signal. The researchers use the 41 km of optical fibers for tests and change them into more than 6000 fiber optic seismic sensors. Moreover, such fiber sensors enabled to detect a magnitude 1.9 earthquake that happened during the test at each of the sensing areas with a sensitivity close to that of a coastal seismic station, even despite the fact that it was located over 100 km from the fiber optic cable.

Nevertheless, the benefits of seismic sensors do not complete: the sensing points of fiber cable are highly sensitive to waves that go through the ocean, for instance, those created by the swell. The influence of waves on the seafloor near the coast, as well as the effect on the abyssal plain, where they produce “seismic background noise” was captured.

Finally, the fiber optic seismic sensors make it real to find out for the first time how the tiny vibrations that permanently interact with the Earth’s interior are created, allowing specialists in geophysics to examine its structure. Also, such fiber sensors may overcome a wide range of scientific and societal challenges like earthquakes, coastal erosion, the interaction between life, the oceans and the solid Earth, etc.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Fiber optic sensors based on the vapor deposited conducting polymer

polymer FBG sensorsA team of researchers from Australia has developed a mathematical model, which is based on energy deposition and the laser-induced damage threshold (LIDT) for low-intensity light radiation resulting in the appearance of conducting polymers in novel fiber optic sensing applications.

It should be noted that nowadays polymer features are regarded as one of the most potentials and studied CP’s, herewith, the material may find numerous applications such as light-emitting diodes (OLED), optical displays, photovoltaic devices, and fiber optic sensors.

The thing is that the poly(3,4-ethylene dioxythiophene) is almost visibly transparent in its doped state, while it converts into an opaque material (dark blue) in the dedoped state, thus, making the polymer ideal for optical applications, for instance, in electrochromic devices and optical fiber sensors.

The interaction between light and the sensing material plays a crucial role in fiber optic sensing. To be more precise, there is a reaction between the sensing material and an external stimulus, therefore, it becomes possible to interrogate and measure the change, linking the optical fiber measurement to the external stimuli. 

Optical fibers are considered to be an ideal example of a way to send light to a volume or point of interest for fiber optic sensing. Usually, “optical material is coated on the side or at the tip of the fiber, which are typically inorganic material”. Numerous recent sensing applications (temperature sensors, hydrogen sensors, and polymer functionalization of exposed-core microstructured optical fibers) include fiber tip fabrication and side coating.

Thus, the researchers present a new fiber optic sensing architecture based on coating the tip of an optical fiber with the vapor-deposited conducting polymer. They confirm that such fiber optic sensors enable us to study the unique electrochemical properties of PEDOT: Tos at the sub-micron length scale. Additionally, the polymer material can be integrated with optical waveguides (optical fibers as well) resulting in a range of electro-optical devices.

Optical fibers provide such benefits as immunity to electromagnetic fields, the possibility for in-vivo, and distributed measurements with the electrochemical properties of poly((3,4-ethylene dioxythiophene). Also, the researchers prepare a technique to gradually deposit PEDOT: Tos layers with desired thicknesses on the tip of optical fibers to produce such a fiber optic sensor.

Finally, the fiber optic technology was tested, and the polymer material was deposited at the tip of cleaned and cleaved SMF-28 optical fiber. Moreover, the deposition technique is based on 4 steps: “ 1. Oxidant solution preparation, 2. Oxidant coating and splitting at the tip of the fiber, 3. VPP process and 4. Washing of unbound and unreacted monomers”.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

FBG accelerometers for railway structural health monitoring

FBG accelerometers for railway monitoringNew improved accelerometers based on fiber Bragg grating or FBG technology by fiber optic sensors allow performing railway structural health monitoring in both frequency and acceleration range. Such FBG accelerometers provide such advantage as immunity to electromagnetic interference, herewith, the fiber accelerometer offers multiplexed data information along very long lengths of a railway or pipeline for the in situ single-headend measurements of such parameters as vibration, strain, temperature, and fault locations or other challenges.

Thus, distributed sensors based on fiber optic technology are considered to be a better sensing device for structural health monitoring, compared to other sensing systems. It should be noted that FBG accelerometer systems are able to perform “perimeter security and other applications where events span frequencies <700 Hz and acceleration shock values of <30 G with sensitivities of about 16 pm/G” among various fiber optic sensing systems.

Nevertheless, the application in railway structural health monitoring requires optical fiber sensors that offer a higher level of acceleration peak value and broader frequency ranges. The developed optical fiber accelerometer offers the following parameters: >40 G acceleration values, 8 pm/G sensitivity for frequency values up to 1 kHz and the device is operable up to 2.5 kHz. The developed fiber optic sensor was already tested in a railway application and demonstrated successful results.

Additionally, it is possible to change the optical fiber cross-section to make the stress-induced measurement optimized, depending on the required parameters. For example, this FBG accelerometer has a commercially available length (about 0.35 m), a 15 mm diameter,  50/50 splitter (3 dB coupler), a 56 g stainless-steel mass (25 mm diameter, 15 mm height).

The principle of FBG accelerometer operation is based on the lateral forces cause birefringence changes that directly correlate with force parameters, such as vibration. Therefore, the FBG accelerometer installed on a moving train enables to monitor of the reflection spectrum in real-time to determine various problems with the track of a railway such as cracks, corrugations, or weak points. 

Finally, the developed microstructured optical fiber used in new types of FBG accelerometers increases the level of measurement sensitivity of available systems up to 5X, and it is planned to apply the optical fiber to manufacture additional FBG accelerometers for field tests. Herewith, the FBG accelerometer is regarded as a highly important sensing device in an all-optical fiber sensing network that offers a great amount of data information resulting in efficient structural health monitoring of railways.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com