FBG sensors: a comprehensive review

FBG sensorsA fiber Bragg grating is an optical interferometer embedded in an optical fiber. At the same time, fiber optics combined with certain substances (usually germanium) can change its refractive factor when the fiber is exposed to ultraviolet light. If such a fiber is illuminated with ultraviolet light with a specific spatial periodic structure, the optical fiber becomes a kind of diffraction grating. In other words, this optical fiber will almost completely reflect the light of a certain, predetermined range of wavelengths, and transmit light of all other wavelengths.

Application of FBG sensors

The FGB application includes the following fields:

  • Point sensors (that is able to measure deformation, temperature, pressure, tilt, displacement), embedded in composite materials and others;
  • Laser systems and amplifiers (filters, mirrors);
  • Telecommunications (dispersion compensation modules, WDM technology);
  • Research and development.

Difference between electrical and fiber sensors

For decades, electrical sensors (tensor-resistive, string, potentiometric, etc.) have been the main method of measuring physical and mechanical phenomena. Despite their widespread use, electrical sensors have several disadvantages, such as loss during signal transmission, sensibility to electromagnetic interference, the need to organize a spark-resistant electrical circuit (if there is a danger of explosion). These mentioned above limitations make electrical sensors unsuitable or difficult to use for a number of applications.

The use of fiber optic sensors is an excellent solution to these problems. In fiber optic sensors, the signal is light in the optical fiber instead of electricity in the copper wire at traditional electrical sensors.

Over the past twenty years, a huge number of innovations in optoelectronics and in the field of fiber optic telecommunications has led to a significant reduction in prices for optical components and to a significant improvement in their quality. This factor allows fiber optic sensors to move from the category of experimental laboratory tools to the category of widely used devices in various areas.

Operating principle of Bragg gratings

A fiber Bragg grating or FBG acts as a sensitive element of point fiber optic sensors, which is capable to reflect certain wavelengths of light and transmit all others.  This effect is achieved by periodically changing the refractive index in the core of the fiber optics.

When the laser light passes through an optical fiber, a part of it is reflected from the fiber grating at a certain wavelength. This peak of reflected light is registered by measuring equipment. As a result of the numerous parameters influence, the interval between the FBG bundles and the refractive index of the fiber optics change.

Consequently, the wavelength of the light reflected from the fiber Bragg grating changes. In addition, it is possible to determine the exact characteristics of the changes by changing the wavelength. In fiber optic sensors based on Bragg gratings, the measured value is converted to a Bragg wavelength offset. The recording system converts the wavelength offset into an electrical signal.

The sensing element of such FBG sensor does not contain electronic components and therefore it is completely passive, which means it can be used in the area of increased explosiveness, aggressiveness, strong electromagnetic interference. Numerous fiber Bragg gratings can be installed on a single fiber, each of which gives a response at its own wavelength. In this case, instead of a point sensor, we get a distributed sensing system with multiplexing along the wavelength.

The use of the light wavelength as an information parameter makes the FBG sensor insensitive to the long-term changes of the parameters of the source and radiation detector, as well as random attenuation of power in the optical fiber.

Common types of FBG sensors

The following types of fiber optic sensors  based on FBG technology are used for automated monitoring:

The principle of FGB sensor operation is based on the modulation of one or several properties of a propagating light wave (intensity, phase, polarization, frequency), which change occurs with a change in the measured physical quantity.

The basis of fiber-optic sensing technology is an optical fiber – a thin glass thread that transmits light through its core. The optical fiber consists of three main components: core, shell, and coating. The shell reflects the scattered light back into the core, allowing light to pass through the core with minimal loss.

It can be achieved by a higher refractive index in the core relative to the shell, resulting in a complete internal reflection of light. The outer coating protects the fiber optics from external influences and physical damage. It can consist of several layers depending on the required protection.

Benefits of fiber sensors based on Bragg gratings

The advantages of FBG sensors include:

  • Wide sensing range;
  • Possibility to integrate the FBG sensing system into the object structure;
  • Full fire and explosion safety;
  • Long-distance signal transmission;
  • Integration of several fiber optic sensors in one channel;
  • Insensitiveness to electromagnetic and radio frequency influences;
  • No need for recalibration (stable over time under constant external conditions).

Bridge, Australia, BridgeAt the moment, most of the sensors used in the world are electrical sensors. As it was mentioned above, in optical sensors based on fiber Bragg gratings, the signal is light passing through an optical fiber (instead of an electric current passing through a copper wire). This fundamental difference allows FBG sensors to overcome many problems typical for electrical sensors.

Features of fiber optic sensors

Optical fibers and sensors are non-conductive, electrically passive, and immune to electromagnetic interference. Monitoring with a tunable high-power laser system allows sensing over long distances with virtually no signal loss. In addition, each optical channel is able to monitor a variety of FBG sensors unlike the electrical channel, which significantly reduces the size and complexity of such a sensing system.

Optical sensing systems are ideal for use in conditions where conventional electrical sensors (strain gauge, string, thermistor, etc.) can be difficult to use (long distances, EM fields, explosion safety, etc.).  It is easy to switch to fiber optic solutions since the installation and operation of optical sensors are similar to traditional electrical sensors.

Understanding the principles of FBG operation and the benefits of Bragg grating sensor applications can greatly facilitate the solution of various problems in the field of sensing measurement (for example, monitoring of structures).

Nowadays FBG sensors are applied in various fields that require precise and fast measurements. Fiber Bragg sensing systems can be used in aeronautic, automotive, civil engineering structure monitoring, undersea oil exploration, in the mining industry, geotechnical engineering, structural engineering, tunnel construction engineering, etc.

Bragg sensors in medicine

The most promising application of FBG sensors is medicine. Now FBG technology is highly used for fiber-based biomedical sensing including biosensing, safety or security, and structural health monitoring. FBG sensors offer a new and effective way of real-time measurements. They can be applied in laser systems, medical tiny intra-aortic probes, and body sensors for biochemical analysis making.

For example, today fiber Bragg gratings apply optical-fiber sensing probes that are able to dissolve due to such ability as controlled solubility in a physiological environment. Thus,  FBG technology enables safer diagnostic of sensitive human organs and there is no need for a surgical extraction. The development of FBG continues, and it is possible that very soon new FBG sensors with improved characteristics appear.

How to choose the right fiber optic product?

If you want to obtain a highly efficient sensing system, you should choose the Optromix company. Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for monitoring worldwide. Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, distributed acoustic sensing (DAS) systems, distributed temperature sensing (DTS) systems. If you are interested in FBG sensors and want to learn more, please contact us at info@optromix.com

Fiber Bragg grating sensors provide groundwater flow sensing

FBG sensors for flow sensingGroundwater flow sensing is highly important when it comes to the extraction of drinking water because it allows for avoiding well clogging and pollution. Nevertheless, fiber Bragg grating sensors with optical fibers are considered to be a promising new technique for monitoring of groundwater flow.

 

The fact is that FBG sensors enable us to identify even tiny changes in temperature, pressure, and fiber shape taking into account the sensitivities influenced by the packaging. Thus, fiber Bragg grating sensors are able to create a multiplexed sensor for the groundwater flow direction and magnitude.

It should be mentioned that the fiber-optic technology of FBG sensors has numerous application range, for example, in aerospace (load monitoring and shape sensing), in civil engineering (structural health monitoring), and in the oil and gas industry (temperature and pressure monitoring).

Today the technology of fiber Bragg grating sensing is also used for groundwater flow monitoring. FBG sensors allow measuring various physical properties, strain, or temperature variations such as pressure, vibrations, and curvature of the optical fiber, herewith, fiber sensors make instant and precise measurements.

One more technique that can be used for monitoring is distributed temperature sensing, and the intended application influences directly the choice of technology – fiber Bragg grating or DTS sensing. DTS uses conventional single-mode or multimode fibers that find various applications in the telecom industry, that is why DTS fibers are available in large lengths.

Moreover, the FBG sensors are possible to be written in traditional and specialty fiber optics, and consequently, their price increases per sensor number. However, the cost of fiber interrogators that are required for the DTS sensing data collection is five times more expensive than FBG units.

Traditional fiber Bragg grating sensors already possess a sufficient temperature resolution for the measurement of groundwater temperature changes without additional packaging. In addition, this FBG system has been recently tested to demonstrate its benefits for groundwater flow monitoring.

Thus, the experiment has shown that the use of FBG sensors enables to measure the relative temperature with a precision of 0.85 ℃ for the differential measurements. Also, the used fiber Bragg grating system is able to make a multiple-sensor interrogation with the possibility of an expansion into a larger distributed sensing network.

Finally, the data results presented that fiber Bragg grating sensors can be employed as a temperature sensing system in the subsurface environment, but in this case, they did not demonstrate any benefits over the existing fiber sensing technologies. Nevertheless, multiplexed fiber Bragg grating pressure or strain sensors would possibly find their application in groundwater flow monitoring.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS)systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in FBG sensors and want to learn more, please contact us at info@optromix.com

Quasi-distributed fiber optic sensor based on fiber Bragg gratings

Quasi-distributed FBG sensorsAt the present time distributed optical fiber sensors based on Raman, Brillouin, and Rayleigh scattering play a crucial role in the area of monitoring due to their ability to measure strain or temperature distributions. Nevertheless, weak signals within optical fibers cause numerous challenges, such as limited spatial resolution, low measurement speed, high system complexity, or high cost of the system. That is why new technology that replaces the previous one and is called a quasi-distributed fiber optic sensing based on fiber Bragg gratings is developed now.

The fact is that over the last decades, fiber optic sensors have become one of the fastest-growing and promising areas of modern sensing technologies. Thus, distributed fiber optic sensing has been successfully employed in numerous strain- or temperature-sensing applications because of the multiple benefits of many sensing points and a long sensing range. Nevertheless, weak signals create new difficulties in the monitoring process.

The use of fiber Bragg grating (FBG) sensors is the only solution to the problem because FBG sensors have stronger reflection signals within an optical fiber. As a result, it is possible to use the technology for obtaining numerous physical and chemical parameters from discretized local points of a few millimeters along with a single optical fiber. Moreover, these fiber optic sensors based on fiber Bragg grating can be easily multiplexed for assurance of high measurement speeds.

Unfortunately, at the moment fiber Bragg grating sensors have several drawbacks. The first is the limit of fiber optic sensors for FBG interrogation systems based on multiplexing. Thus, the maximum available number of sensors is considered to be a few tens or less. The second drawback of FBG sensors is the relatively high cost of the writing of periodic grating that is needful for the assurance of high reflectivity at different Bragg wavelengths. This is the reason why fiber optic sensors based on fiber Bragg grating are not suitable for mass production.

Herewith, a novel real-time quasi-distributed fiber optic sensor with weak fiber Bragg gratings allows increasing the number of FBG sensors up to 31 for the successful and efficient process of interrogation. Such a system does not require special maintenance, has a long lifetime because its most components are optical fibers and semiconductor tools that can be easily found in the optical industry.

Finally, this FBG system offers the following advantages that can find numerous applications in the near future:

  • high linearity;
  • high speed;
  • high stability against harsh environmental factors such as vibration, temperature, and humidity.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

New long-gauge FBG sensor allows detecting corrosion damage

FBG sensors for corrosion detectionNowadays the process of main steel reinforcement corrosion is one of the most frequent problems that evokes structural deterioration and reduces its durability. However, the development of a new kind of long-gauge fiber Bragg grating sensor enables us to detect and quantify corrosion damage via a two-level strategy.

The main advantage of the novel long-gauge FBG sensor compared with the conventional strain sensors is the possibility to use it for both local and global structural monitoring. The principle of FBG technology operation is based on the measurement of the averaged strain within a long gauge length.

It should be noted that the new FBG system is based on the dynamic macro strain responses of FBG sensors. The technology of the strain flexibility detects the location of the corrosion process, and then it quantifies the corrosion by analyzing the sensitivity of strain flexibility.

Moreover, the technology of fiber Bragg grating sensors provides the following benefit that lies in highly accurate and effective corrosion quantification that is possible to be performed in a reduced domain. Herewith, the FBG sensing system has shown great results while testing in the marine environment.

The FBG technology is highly effective in the detection of structural corrosion, but unfortunately, fails to determine the corrosion process unless the apparatus covers the corroded part. Nevertheless, the FBG-based strain sensor remains the most popular due to the use of small, lightweight optical fibers that allow being easily attached to the surface of any steel reinforcement.

The main difference between the new fiber Bragg grating sensors and traditional ones is that civil structures with a large scale and complex shapes very often contain a high quantity of unknown factors that make the process of analysis slower and more complicated. Also, compared to long-gauge FBG sensors, most damage detection techniques are able to detect damage, but can not quantify the severity.

Thus, the distributed long-gauge fiber Bragg grating sensor is a very promising technology for the efficient and precise location of the corrosion damage and further structural long-term performance estimation. Herein, researchers have developed a step-by-step strategy that would help to detect and quantify the process of corrosion, and even proved it by a solid theoretical basis.

Finally, the novel two-level corrosion detection by the FBG sensing system provides a decisive superiority because the corrosion detection significantly reduces the number of unknown factors in the sensitivity equations and increases the success of the corrosion quantification.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS)systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in FBG sensors and want to learn more, please contact us at info@optromix.com

Fiber optic cables for earthquake monitoring

FBG sensors for earthquake monitoringNowadays researchers from California are planning to use “dark fiber optic cables”, i.e. unused fiber cables, for underground monitoring of sound waves or signals came from earthquakes. It should be noted that today millions of fiber optic cable miles remain unused underground in spite of the fact that they have numerous applications.

Thus, the researchers have developed a new technique of fiber optic underground monitoring that allows higher-resolution measurements of the Earth’s crust movement than the seismic detector networks could offer at the present time. Herewith, in traditional seismology the number of optical sensors for earthquake detection is limited but this technology makes each couple of meters a separate sensor.

Also, today’s problem is the measurement of the Earth’s surface vibrations because, in some seismically active places, there are a lot of fiber optic sensors while the areas that are far from tectonic plates have only a few. That is why it remains difficult to take measurements in places with fracking-induced earthquakes.

The new technique is based on distributed acoustic sensing that includes laser pulses with the aim of vibration detection along with the fiber. Moreover, the researchers use FBG interrogators that are placed along the fibers that transmit and detect short infrared laser signals.

The principle of the interrogator operation includes the detection of tiny strains caused by seismic activity on the fiber, then they force the laser light to reflect and bounce back to the fiber sensor. Thus, the researchers are able to determine light changes scattering over time by analyzing the rapid pulses, and this information shows where the seismic activity occurred.

The technology of distributed acoustic sensing was tested in real-world conditions and enable to extract information about the speed of waves traveling through the Earth’s surface. Moreover, the researchers succeeded in the earthquake measurement that happened in Mexico due to the distributed acoustic method and used fiber optic cables.

The potential application of DAS technology is the determination of groundwater location, nevertheless, the tests were not successful although the researchers could measure passing trucks and trains.  Unfortunately, this experimental method is not ready for application beyond research yet because there are a lot of limitations. For example, now a single sensing location along the line is less sensitive than a single seismometer and is able to measure the fiber strain only in one direction. The second problem of fiber optic cables is a huge amount of data that are difficult to manage, store, and organize. Herewith, the new DAS technique cannot be used yet on underwater lines.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS)systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in acoustic measurement systems and want to learn more, please contact us at info@optromix.com

FBG sensors for monitoring of overhead transmission systems

FBG sensors for transmission system monitoringNow it is highly important for the industrial sphere to have the ability of overhead transmission systems monitoring technology with the aim of potential error identification that can touch vital components.  The main reason for severe mechanical errors is different in extreme situations. Consequently, the monitoring system of excessive mechanical and environmental loadings is the only significant solution to find and prevent potential risks.

The fact is that there are numerous factors that can occur in overhead transmission systems and cause different loadings. For example, the loading conditions include:

  • excessive bending;
  • aeolian vibrations;
  • galloping;
  • ice loading and shedding;
  • the impact from falling objects;
  • hot spots;
  • aging;
  • galvanic corrosion, and others.

Herewith, these factors could severely damage the structural integrity of the conductors but for fiber Bragg gratings sensors for transmission monitoring.

Thus, a novel composite based overhead transmission lines were designed in response to the world’s increasing level of electrical consumption. Moreover, these FBG conductors are able to maintain severe environmental conditions, and they are considered to have a high period of service that can last for many decades.

It should be mentioned that previous monitoring systems of transmission lines were very difficult or even sometimes impossible process. Nowadays modern monitoring technology allows reducing costs on maintenance and inspection, and it is also able to make life predictions of the transmission systems.

This monitoring system uses optical sensing technology in high voltage environments whose main benefit is the immunity to electromagnetic interference and low signal weakening that make the system ideal for power transmission structures.

Also, FBG sensors include conventional single-mode optical fiber that enables to measure temperature and strain of live lines in-service. Herewith, the process of monitoring can be made from miles away without conductive materials. The data obtained by strain signals processing from static and dynamic loads can be used for the detection of conditions that can affect the conductors.

The application of FBG monitoring technology also includes the assessment of the structural system health as well as the identification of the impact location relative to the position of FBG sensors along the conductor. Finally, the development of an FBG monitoring system will provide better control and maintenance procedures for the conductors of different types.

Optromix is a fiber Bragg grating (FBG) products manufacturer that offers FBG sensors, FBG interrogators and multiplexers, DAS systems, DTS systems. Optromix creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you have questions or would like to buy FBG products, please contact us at info@optromix.com

Fiber optic spark monitoring for EDM

FBG sensors for EDMEDM or electrical discharge (spark) machining is the most advanced of metalworking technologies. EDM is worldwide used because of its high accuracy and machining applications where traditional metal removal is highly difficult or even impossible.

The principle of EDM operation includes the spark that moves from the wire electrode to the work item approximately at the same speed as the electrical signals transmitting through the wires of the monitoring system. Nevertheless,  the distance between this work item and the wire electrode is shorter than the space interval between the spark and the control, that is why there are some difficulties in monitoring.

Thus, spark monitoring is very important and needs some technical improvements. Fiber optics is the best solution for the challenge that provides a high level of process control, increases the life of the wire, and eliminates the possibility of wire damage. Moreover, the use of a fiber optic spark monitoring system improves the problem of slow electrical signals and thereby, allows making timely all required adjustments and maintaining permanent sparks.

The main aim of fiber-optic cable use is the reduction of wire wear to save costs for the user. For example, previous machines had stronger sparks and low frequency that provoked high wire pressure. Novel fiber monitoring systems have a higher number of sparks per second with less intensity.

It should be mentioned that fiber-optic cables are not limited by the electricity speed comparing to electrical wires because fiber cables transmit data through light pulses. Moreover, they are almost one hundred times faster than electrons. This improvement allows not only reducing wire wear but also keeping spark output and decreasing the necessary voltage.

Also, fiber optic cables leave behind electrical wires because of the following reasons:

  • safety due to nonconduction of fiber optics;
  • lightness despite the required power and distance;
  • higher data bandwidth at longer distances;
  • faster transmission speed;
  • the thinness of the cable;
  • the durability of fiber cables;
  • better reliability;
  • lower total costs.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

Total information about fiber optic temperature sensor

FBG temperature sensorsToday all modern industries include highly complex and sensitive operations that require permanent operational conditions that are possible to provide due to the use of advanced technologies for temperature measurement. One of the potential solutions is the use of fiber optic temperature sensors.

 

There are several ways of temperature measurement: classic mercury glass thermometer, infrared pyrometer, electronic thermometer. However, the most effective method is fiber temperature sensing because it provides accurate measurement compared to the mentioned techniques and has numerous fields of application such as high voltage machines, nuclear power plants, chemical power plants, etc.

The types of fiber temperature sensors include interferometric and non-interferometric sensors. The traditional non-interferometric sensor has multi-mode optical fiber construction and materials that are sensitive to temperature. Also, they are able to register changes, for example, absorption, transmission, and reflection parameters due to temperature variation.

The simple interferometric fiber optic temperature sensors are more flexible and provide the sensitivity of a higher level. The fields of the use include temperature, pressure, rotation, strain, etc. The principle of the operation is the comparison of the beam phase through sensing fiber with the reference beam.

The advantages of optical temperature sensors:

  • Immunity to electromagnetic and stray radiation;
  • Possibility of the use in hard electrical conditions;
  • Greater accuracy and faster response time;
  • Lightweight and compact size;
  • Low cost;
  • Wide temperature measurement range.

Nevertheless, fiber optic temperature sensors are not ideal and have some disadvantages such as different temperature ranges of operation and measurement accuracy for different types of sensors, the difficulties of development expensive price for some optical sensors.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS)systems. The company creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you are interested in temperature measurement systems and want to learn more, please contact us at info@optromix.com

FBG biosensor is able to detect thrombin in human blood

FBG sensors for thrombin detectionThrombin plays a very important role in normal and pathological blood coagulation because its high level is an indication of tumor cell presence. Also, the level of thrombin is growing while atherosclerosis, thromboembolic disease, cancer, and inflammatory disease. Thus, its clinical importance provokes the development of devices for fast and precise thrombin detection and most of them are based on aptamers.

One of the ways to solve the problem is the use of optical-fiber grating-based sensors that have a great range of advantages:

  • high level of sensitivity;
  • multiplexing ability;
  • compact size;
  • lightweight;
  • possibility of multi-modal sensing;
  • tolerance to electromagnetic interference;
  • low manufacturing cost.

All FBG sensors are based on different operation principles. There are LPG, etched fiber Bragg gratings, tilted FBG, microstructured Bragg gratings, photonic crystal fibers, or PCF. Nowadays the development of these types of sensors, especially, those which can detect thrombin, is the primary objective.

Etched fiber Bragg grating (EFBG) is one of them, its manufacturing is highly simple and fast because it has chemical etching liquids (for example, hydrofluoric acid) that are able to take away the cladding very quick at a controlled rate. Also, EFBG differs from core-exposed micromachined gratings by the absence of a laser micromachining station that makes the process of fabrication harder.

In spite of the fact that etched fiber Bragg gratings sensors have less sensitivity than in other types, there are numerous advantages over these sensing devices. For example, EFBG systems obtain simple adjustability of their sensitivity. Moreover, there is no need for a polarization control because etched Bragg gratings measure reflection.

This optical-fiber grating-based sensing system operates with a wavelength of 1550 nm, uses hydrofluoric acid as etching fluid for approximately 27 minutes. It is able to detect thrombin in concentrations ranging from 10 nM to 80 nM and the use of EFBG has a promising future as the manufacture of FBG biosensors needs only chemical etching, also it is simple and less expensive than other types of sensing systems. Moreover, etching fiber Bragg grating sensors are easy for multiplexing and, consequently, can be used in vivo. Finally, all the advantages expand the opportunities for thrombin detection.

Optromix is a fiber Bragg grating (FBG) products manufacturer that offers FBG sensors, FBG interrogators and multiplexers, DAS systems, DTS systems. Optromix creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. If you have questions or would like to buy FBG products, please contact us at info@optromix.com

Bioresorbable Fiber Bragg Grating sensor advances medicine

bioresosbable FBG sensorToday environmental change provokes the appearance of new diseases and, finally, human health care requirements continue increasing for several decades. Moreover, it is necessary to have new advanced tools for the disease diagnosis at early stages, for monitoring and treatment of patients. Then unconventional biomedical instrumentation and sensors, including optical-fiber sensors come for help to modern medicine. And devices with bioresorbable fiber sensors increase the efficiency of monitoring and treatment.

Fiber Bragg Grating (FBG) is one of the most productive ways suggested for fiber-based biomedical sensing. Fiber Bragg grating sensing technology provides a new and effective way of real-time measurements. The fields of FBGs application contain biosensing, safety or security, and structural-health monitoring. Also, FBG sensors are highly suitable for laser systems, medical tiny intra-aortic probes, and body sensors for biochemical analysis making.

Modern Fiber Bragg Gratings use bioresorbable optical-fiber sensing probes that have such ability as controlled solubility in a physiological environment. A bioresorbable material is the main component of FBG sensors and the human body easily and safely assimilates it at a special time interval. The technology allows safer diagnostic of sensitive human organs and there is no need for a surgical extraction. Fiber Bragg Gratings sensors are easy to install and use, their sensing points have quite high density. It is an ideal, cost-effective, and accurate technology for extreme environmental conditions.

The advantages of optical fiber include:

  • good mechanical durability;
  • high optical transmission;
  • stoichiometrically tunable dissolution rate.

It should be mentioned that tilted Bragg gratings with a 1-degree tilt angle that are immersed in phosphate-buffered saline solution with temperature and pH conditions similar to those of the human body allow fiber dissolution studying. Finally, selective chemical-etching effects were found out thanks to scanning electron microscope images and micro-Raman spectroscopy.

Thus, bioresorbable fiber Bragg grating sensors are considered to be effective for the development of soluble, compact photonic sensing probes that can be used for in vivo monitoring of vital mechanical or chemical factors with a specific time limit, and also in controlled in-body drug delivery.

Optromix is a fast-growing vendor of fiber Bragg grating (FBG) products line such as fiber Bragg grating sensors, FBG interrogators and multiplexers, Distributed Acoustic Sensing (DAS) systems, Distributed Temperature Sensing (DTS) systems. Optromix creates and supplies a broad variety of fiber optic solutions for monitoring worldwide. The range of services includes research programs, interpretation reports, layout design, system software modeling, commissioning, user training, real-time data transition, equipment supply, ground part installation, engineering, and technical support. If you have questions or would like to buy FBG products, please contact us at info@optromix.com